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Chapter 1

Introduction

Abstract

This project aimed to promote, develop, and make available techniques
for Bayesian statistical inference in the auditing profession. Auditors, audit
firms, and audit standard setters have long shied away from developing inno-
vative statistical methods. To a large extent, they have ignored the Bayesian
revolution in statistics, which means that many auditors analyze their data
using the familiar frequentist statistical framework that has been used for
decades. This is a troubling state of a↵airs: Auditors perform important
work in today’s society only to analyze their data using statistical methods
that are suboptimal for answering the questions at hand. For this reason,
this thesis proposes that audit practitioners can innovate greatly by adding
Bayesian methods to their statistical toolbox. However, before Bayesian
statistics can be fully adopted by auditors in practice, three conditions must
be fulfilled. First, there must be a clear argument for using Bayesian statis-
tics in a modern auditing context; second, auditors must have an easy-to-use
toolbox to perform Bayesian inference; and third, Bayesian techniques must
be easily accessible to all audit practitioners via user-friendly open-source
software.

1.1 A brief historical preamble

This thesis advocates the use of Bayesian statistics in auditing theory and practice.
It aims to address a number of academic and practical needs, particularly in the
area of statistical sampling. To understand how these needs came to be, it is
important to first have a basic understanding of how statistical sampling has
evolved in this area. Let’s begin at the beginning.

The word “audit” comes from the Latin verb audire, which means “to hear”.
Perhaps it would not surprise you to learn that the earliest known auditors were
spies for the ancient Persian king Darius, who served as the “King’s ears” by
monitoring the conduct of his subordinates. The first written checking activities,
which are also thought to be an early form of auditing, date back a few hundred
years later to ancient China, Egypt, and Greece. Throughout recorded history, the
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1. Introduction

function of an audit has been to provide groups or individuals with information or
reassurance about the conduct or performance of others (Flint, 1988). Because of
their function, audits have historically been crucial to maintaining social stability;
after all:

“Without audit, no control; and if there is no control, where is the seat
of power?” (Mackenzie, as cited in Normanton, 1966, p. 7)

Nowadays, auditors serve the public interest rather than the interests of kings
and pharaohs, but the function of an audit remains the same. The auditing
profession as we know it today can be traced back to 1844, when the British
Parliament passed the Joint Stock Companies Act (Lee and Ali, 2008). The law
required directors of companies to report to shareholders using an audited financial
statement. Furthermore, the act made auditors responsible for ensuring that these
financial statements were presented fairly.

By the late nineteenth century, most companies wishing to trade on the stock
exchange were required to provide annual audited financial statements and balance
sheets (Leung et al., 2007). During this time, the demand for auditing increased,
and so did the size and complexity of companies, resulting in a large number of
transactions on the balance sheets. As a result, it became impractical for auditors
to confirm every transaction. This popularized the use of sampling (i.e., selecting
and auditing a subset of all transactions on the balance sheet) in auditing research
and practice. Audit researchers were quick to advocate that statistical sampling
could help practitioners be more e�cient while maintaining audit quality:

“The purposes of the external audit will be better accomplished with
the use of [statistical] sampling than would be the case if the same
dollar-cost was expended upon more detailed vouching.” (Kirkham
and Gaa, 1939, p. 144)

At the turn of the twentieth century, the body of scientific literature on sta-
tistical audit sampling was full of examples of frequentist sampling methodologies
being used (Kraft Jr, 1968). However, auditors who conducted statistical sam-
pling in practice quickly discovered that large samples were required to achieve
acceptable statistical results at high levels of assurance, and that this was very ex-
pensive. In response, auditors increased their reliance on internal control systems
in their audit procedures: When auditors determined that a company’s internal
control systems were e↵ective, they reduced the number of samples that followed.

In the mid-twentieth century, audit researchers began to think critically about
how to take into account pre-existing information to reduce the amount of required
audit e↵ort. At that time, Bayesian statistics was already established in the field of
mathematics and statistics (van de Schoot et al., 2017) thanks to the pioneering
work of Je↵reys (1939), and it was being advocated for use in many business
decision-making situations (Kraft Jr, 1968). This alternative type of statistical
inference piqued the interest of auditing researchers because it enabled them to
formally incorporate pre-existing information into the statistical analysis, such as
information about the auditee’s internal control systems. Researchers were quick
to promote Bayesian inference for use in auditing:
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1.1. A brief historical preamble

“[T]he value of the Bayesian approach to the accountant is not that it
stresses the existence of prior information, but rather that it suggests
a methodology for incorporating prior information into the analysis.”
(Birnberg, 1964, p. 111)

In the late twentieth century, when computing power had increased and Bayesian
computations had become tractable for auditors in practice, Bayesian statistics
was argued to be an appropriate and theoretically correct tool to be used in au-
dit sampling. The academic literature from that time reflects agreement among
audit researchers that widespread adoption of Bayesian statistics in practice was
imminent:

“In the past, the theoretically correct model has been virtually impos-
sible to use in practice. Now with the increasing use of computerized
audit decision aids, it is becoming increasingly more feasible. It is not
too di�cult to predict that within the foreseeable future such complex
models will be an integral part of the audit.” (Leslie, 1984, pp. 104–
105)

“Field workers now have the computing power necessary to do sophis-
ticated audit planning and evidence integration. We scholars can no
longer avoid these issues by using the excuse of computational imprac-
ticality.” (Kinney, 1984, pp. 131–132)

However, at the dawn of the twenty-first century, nearly three decades later, the
anticipated adoption of Bayesian statistics in auditing did not occur. Frequentist
inference was still the foundation of most audit textbooks (e.g., Touw and Hoog-
duin, 2012), it remained what auditors were taught and were using in practice,
and it was still being promoted by audit researchers (e.g., Edmonds et al., 2019)
and (guidance on) auditing standards (e.g., Stewart, 2012; American Institute of
Certified Public Accountants (AICPA), 2019). In his thesis—which contains some
of the most recent fundamental texts on Bayesian inference in auditing—Stewart
(2013) provides his account on why Bayesian statistics was never fully able to find
its place:

“In my opinion, one reason for this lack of progress is a general de-
cline in interest in the application of quantitative, probabilistic and
statistical methods in auditing. Accounting firms reduced basic audit
research in this area as they focused on the development of new ser-
vices. Academic research into and teaching of such methods declined
as a consequence, leading to a further decline in practitioner awareness
and proficiency. The methods were also perceived as di�cult to apply
and meld with professional judgment, and the cost-benefit of training
auditors to be proficient in them was questioned. Interests, proficiency,
and academic engagement declined.” (Stewart, 2013, p. 23)

Unfortunately, his account still summarizes the current state of a↵airs. To
this day, statistical sampling remains one of the primary methods auditors use to
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1. Introduction

obtain reasonable assurance about the misstatement in a population (Christensen
et al., 2015; Glover et al., 2015). Hence, the advantages that made Bayesian statis-
tics initially appealing to audit researchers and practitioners are still relevant, but
a lack of guidance, proficiency and easy-to-use statistical tools is holding o↵ the
adoption of Bayesian methods in practice. On top of that, due to advances in com-
putational capabilities and the changes in the audit environment because of those
advances (Salijeni et al., 2019), the body of fundamental literature on Bayesian
auditing has grown outdated and is therefore di�cult to relate to for auditors.
As a result, the fundamental arguments for Bayesian inference in auditing have
largely faded from collective memory.

In my opinion, the adoption of Bayesian statistics in auditing requires three
conditions to be fulfilled. First, there must be a clear argument for using Bayesian
statistics in a modern auditing context; second, auditors must have an easy-to-use
toolbox to perform Bayesian inference in practice; and third, Bayesian techniques
must be freely available to all auditors via user-friendly open-source software. This
thesis outlines my e↵orts to meet these three requirements.

1.2 Frequentist versus Bayesian probability

The concept of probability will be covered regularly in this thesis. Therefore, I
believe it is useful to provide a bird’s-eye view of the two lenses through which
probability can be approached: the frequentist approach and the Bayesian ap-
proach. The fundamental di↵erence between these two approaches lies in how
they interpret probability and uncertainty.

According to the frequentist school of thought, the probability of an event is
the long-term relative frequency of that event (Wagenmakers et al., 2008). For
example, the probability of obtaining heads when flipping a fair coin in the long
run is ✓ = 1

2
. The outcome of each flip (i.e., the data) is determined by chance:

Every flip the coin lands on either heads or tails, each of which occurs with a
probability of 1

2
. This means that if you flip the coin many times, you would

anticipate it to land on heads half of the time. However, if you only flip the coin
a few times, it is reasonable to expect that, simply by chance, not exactly half of
the flips will result in a head. For instance, it is not di�cult to imagine a scenario
in which you would flip the coin three times and obtain three heads in a row.
Because in a frequentist view the data is the outcome of a probabilistic process, it
can make a probabilistic statement about the data given an assumption about ✓.
For example, what is the the probability of obtaining three heads in a row given
that ✓ = 0.5?

According to the Bayesian school of thought, the probability of an event is a
degree of belief in the occurrence of that event rather than its long-term relative
frequency (Wagenmakers et al., 2008). In contrast to how the frequentist approach
is commonly applied, Bayesian statistics assumes that there is uncertainty about
✓, however, the knowledge about ✓ can be expressed in the form of a distribution
that assigns a relative probability to each of its possible values: a prior distribu-
tion. Such a probability distribution can be used to capture your current state of
knowledge about ✓, even before any data is observed. For example, your beliefs
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1.2. Frequentist versus Bayesian probability

about the probability of the coin landing heads may be di↵erent from mine if,
say, you have information that the coin is slightly bent and I do not. Then, it is
reasonable to incorporate this pre-existing information into the prior distribution
for ✓. Using a mathematical rule called Bayes’ theorem, the prior information
can be combined with the information in the data to determine the post-data, or
posterior, knowledge about ✓.

prior + data ! posterior

Because a Bayesian approach assigns probabilities to values of ✓, it can make a
probabilistic statement about ✓ given the data (and the prior information). For
example, what is the probability that ✓ is (higher or lower than) 1

2
given three

heads in a row?

1.2.1 Example

Let’s consider an example in an audit context to briefly illustrate the practical
di↵erences between the frequentist approach and the Bayesian approach. Suppose
an auditor is tasked with obtaining reasonable assurance about a population of
accounts receivable not being materially misstated. A population not being ma-
terially misstated in an audit context means that the population does not contain
misstatements (i.e., errors) larger than a set maximum: the performance mate-
riality. For illustrative purposes, let’s say the performance materiality for the
population is ✓max = 1

2
, but note that typically this value is set much lower. The

auditor has decided to perform audit sampling, taking a random sample of ten
items from this population. After inspecting the n = 10 items in the sample, they
discover that k = 0 items contain a misstatement. Using these data, the auditor
wants to form an opinion about whether the population is materially misstated or
not.

In a frequentist approach, the auditor typically defines the probability of mis-
statement in the population ✓ as the performance materiality ✓max, but keep in
mind that this is an assumption. The left panel in Figure 1.1 shows the probability
of observing a particular number of misstatements k in the sample of ten items
given the auditor’s assumption about ✓. The figure illustrates that, even if the
probability of misstatement in the population is 1

2
, it is still possible to obtain a

sample of ten items and discover no misstatements. However, there is a very low

probability of obtaining this sample ( 1
2

10

= 0.001). This may lead the auditor
to conclude that the population is likely not materially misstated. Note that this
commonly used frequentist conclusion is based on the probability of the data given
the auditor’s assumption about ✓.

As a Bayesian, the auditor starts by specifying their current knowledge about
the probability of misstatement in the population via the prior distribution. For
illustrative purposes, suppose that the auditor does not know which values of the
probability of misstatement are more likely than others. Then, a prior distribution
that assumes all possible values of ✓ to be equally likely can reflect their current
state of knowledge. This uniform prior distribution is shown as a dashed line in the
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Figure 1.1: The left panel shows the probability of observing zero to ten misstate-
ments k in a sample of n = 10 items if the true probability of misstatement ✓ is 1

2
.

The right panel shows a uniform prior distribution and the posterior distribution
for the probability of misstatement ✓ after observing a sample of n = 10 items
containing k = 0 misstatements.

right panel of Figure 1.1. Next, the data from the sample can be used to update the
prior distribution to a posterior distribution, which is displayed as a solid line in the
right panel of Figure 1.1. The panel shows that the posterior distribution assigns a
relatively high probability to low values of ✓ (e.g., the probability that ✓ is smaller
than 1

2
is 0.999). This may lead the auditor to conclude that the population

is likely not materially misstated. Note how, in comparison to the frequentist
approach described in the preceding paragraph, a Bayesian conclusion is based on
the auditor’s knowledge about ✓ given the data (and the prior information).

In statistical audit sampling, both the frequentist and the Bayesian approaches
are reasonable and can be applied within the framework prescribed by interna-
tional auditing standards (International Auditing and Assurance Standards Board
(IAASB), 2018; American Institute of Certified Public Accountants (AICPA),
2021; Public Company Accounting Oversight Boards (PCAOB), 2020). However,
the Bayesian approach to audit sampling comes with considerable advantages for
auditors. In the following sections, I will go into greater detail about the ad-
vantages of Bayesian inference for auditing, as well as describe the academic and
practical needs that this thesis addresses.

1.3 Academic relevance

The main argument for the Bayesian approach in auditing is that it is consistent
with the philosophy of the audit. For instance, to comply with auditing standards,
auditors must reduce the audit risk to an acceptable level (e.g., 5 percent) and
obtain a reasonable level of assurance (e.g., 95 percent) that the total amount
of misstatement does not exceed performance materiality (American Institute of
Certified Public Accountants (AICPA), 2019). The way that frequentist statistics
is typically applied in audit sampling does not easily allow for such conclusions.
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1.3. Academic relevance

As shown in the previous section, a commonly used conclusion of this approach
concerns the probability of data given an assumption about the performance mate-
riality (for example, there is a 5 percent probability of observing these data given
that the population contains misstatements that exceed the performance mate-
riality). This is typically not what auditors are hoping to conclude from their
samples because it is not a probabilistic statement about the misstatement in the
population. Bayesian statistics makes it easier for auditors to draw the conclu-
sions they want. A Bayesian conclusion is a statement about the misstatement
in the population given the data (for example, given the data there is less than
5 percent probability that the misstatement in the population exceeds the perfor-
mance materiality), which is in line with what auditors are hoping to conclude.
Furthermore, Bayesian statistics makes it easier for auditors to align their ap-
proach to audit sampling with the situation in practice. In auditing, pre-existing
information is often available (such as the risk of material misstatement), which
auditors typically want to take into account when conducting a statistical analy-
sis. Bayesian statistics enables auditors to aggregate many sources of information
throughout the audit in a statistically sound manner and base their opinion on the
aggregated information. In sum, the objectives of the auditor are closely aligned
with the characteristics of Bayesian inference because the audit process is essen-
tially Bayesian in nature (Stewart, 2013, pp. 22–24). Hence, Bayesian statistical
models are ideally suited to apply in this context.

Despite its natural alignment with the audit, there is currently little academic
interest in describing the Bayesian statistical framework in the context of audit-
ing. Moreover, the few innovative statistical methods that are being presented are
challenging for auditors to apply in practice (e.g., Meeden, 2003; Martel-Escobar
et al., 2018). Both of these issues largely contribute to the sparse academic liter-
ature developing Bayesian techniques in an auditing context, even though these
techniques are continually being applied and described in other scientific fields
(e.g., Brown and Prescott, 2015; Wagenmakers et al., 2018b). This, in my opin-
ion, indicates the need for improving the current state of the Bayesian auditing
literature. This thesis makes three relevant contributions to the academic auditing
literature in response to this need.

First, the thesis restates and expands the fundamental arguments in favor
of Bayesian inference in an auditing context. During the late-twentieth century,
many scholars like Kinney (1975), Felix (1976), Leslie (1984), Stringer and Stew-
art (1986), Steele (1992), van Batenburg and Kriens (1989) and Johnstone (1994),
have advocated the Bayesian approach to audit sampling. However, the audit
environment has changed since then (Salijeni et al., 2019), and the methods that
were previously described as being optimal are no longer tailored to the current
auditing environment. For instance, the use of relatively simple prior distributions
and statistical models is emphasized in previous literature, but this is no longer
necessary due to an increase in computing power and the increased availability
of external data sources. Thanks to availability of probabilistic programming
languages like winBUGS (Lunn et al., 2000) and Stan (Carpenter et al., 2017)),
applying complex Bayesian models in practice is currently relatively easy for au-
ditors. In the last two decades, some articles (e.g., Meeden, 2003; Higgins and
Nandram, 2009) proposing innovations in statistical auditing methodology have
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1. Introduction

been published, but many of these articles fail to acknowledge the existence of
external sources of information. Furthermore, during this time period, only a
small number of articles have been published in this field that employ Bayesian
inference (e.g., Laws and O’Hagan, 2000; Martel-Escobar et al., 2018; Laws and
O’Hagan, 2002; Johnstone, 2018). These articles do, of course, apply Bayesian
statistics, but they often do not go into detail about its fundamental theory or
its benefits for auditors in a modern auditing environment. Unfortunately, this
means that the current body of literature describing the theory and practice of
Bayesian statistics in an auditing context is out of step with the kinds of audit
environments that today’s auditors are faced with. For this reason, this thesis
reiterates and modernizes the arguments in favor of Bayesian inference made by
scholars during the late twentieth century.

Second, the thesis introduces an innovative Bayesian approach to audit sam-
pling where the auditor develops a statistical model for the data and uses the
Bayes factor as a yardstick for audit evidence. The academic literature developing
statistical auditing methodology is sparse. This can be partly explained by the
fact that there is a lot of pressure during an audit, the stakes are high, and inno-
vations should have the support of both standard-setters and auditors. Sadly, this
means that statistical methodology does not advance as quickly in our field as it
does in other scientific disciplines. As a result, the statistical techniques that are
described in the current auditing literature are frequently suboptimal to address
the questions that auditors have. For example, there is an increasing amount of
external data that is available in the audit, and much research has been done on
how to obtain this data (e.g., Appelbaum et al., 2018), but little research has
been done on how to incorporate this data into later stages of the audit (e.g., au-
dit sampling). Although other scientific disciplines have widely adopted statistical
techniques that achieve this (Gelman et al., 2013), statistical models used in au-
diting are often simple and ine�cient. The thesis seeks to fill this methodological
gap in the academic auditing literature. To achieve this, it introduces Bayesian
(generalized linear) modeling as a framework to incorporate multiple sources of
information into the statistical analysis. Additionally, it introduces a measure
for statistical audit evidence that has not been previously discussed in the audit
sampling literature: the Bayes factor (Kass and Raftery, 1995; Johnstone, 2018,
pp. 33–34). Simply put, the Bayes factor indicates how much more likely the sam-
ple data is to occur in the presence of material misstatement than in the absence
of material misstatement, or vice versa. This makes it an intuitive measure of
audit evidence that closely matches the auditor’s reasoning. By providing a full
Bayesian framework for estimation and hypothesis testing, the thesis aims to lay
the foundation for the development of more advanced statistical methods in this
field.

Third, the thesis captures the output of academic research into open-source
software such that it can be used by all researchers and practitioners. Statis-
tical methodology described by auditing researchers is not often made available
to students, researchers and practitioners, despite this practice being common in
some other scientific fields (e.g., Foster and Deardor↵, 2017; Love et al., 2019).
Hence, most available software tools implementing statistical auditing methodol-
ogy are specialized commercial programs like IDEA (CaseWare Analytics, 2022)
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1.4. Practical relevance

and ACL (Dilligent, 2022), which are both costly and nontransparent because they
do not provide access to their source code. Open-source software is software whose
source code is publicly available without restriction and without cost. Most im-
portantly, open–source software is developed collaboratively in a community with
software developers and users. Hence, the development of open-source software is
sometimes compared to a crowded Bazaar and that of closed-source software to a
Cathedral (Raymond, 1999). This has a number of advantages, for example that
the end user always comes first and development of the software is normally faster
than with closed-source (AlMarzouq et al., 2005; Morgan and Finnegan, 2007).
Especially in the field of auditing, where trust and transparency are essential,
open-source software has the potential to contribute. In addition to being more
transparent and, most importantly, free, open-source software can serve as a link
between auditors in practice and innovative statistical methodology that results
from academic research. This thesis implements the basic (Bayesian) methods for
statistical audit sampling into the open-source software JASP (JASP Team, 2022),
thereby providing a tool for all academic practitioners to use and expand upon.
With that, it addresses the absence of openly accessible statistical software and
provides a platform for collaboration between audit researchers and practitioners.

In sum, this thesis aims to develop an innovative approach to statistical au-
diting that elevates the field to the Bayesian methodological standards currently
upheld in other scientific disciplines (van de Schoot et al., 2021).

1.4 Practical relevance

Although the Bayesian approach to auditing has many advantages, these advan-
tages are often unknown to auditors or di�cult to apply in practice. This, in my
opinion, indicates the need to make Bayesian methods more accessible to auditors.
This thesis makes three relevant contributions to the auditing practice in response
to this need.

First, the thesis aims to promote Bayesian inference in the auditing profes-
sion by o↵ering a thorough overview and discussion of the practical advantages of
Bayesian statistics in a modern auditing context. In short, four major benefits of
Bayesian statistics are put into focus. First, Bayesian statistics o↵ers auditors a
straightforward interpretation of statistical results. While frequentist results are
often prone to misinterpretation (Hoekstra et al., 2014; Nickerson, 2000, pp. 246–
263), a Bayesian conclusion is in line with what auditors want to learn from their
samples. Second, Bayesian statistics enables statistical conclusions to be easily
extended to any level of complexity. In a Bayesian analysis, both the prior distri-
bution and the statistical model can take into account pre-existing information.
This means that auditors can make optimal use of their pre-existing information
and, as a result, provide a fine-grained audit opinion because it is specifically tai-
lored to the audit and the auditee. Third, since auditors must explicitly state their
assumptions in a Bayesian approach via the prior distribution, this can increase
transparency towards stakeholders of the audit. Information incorporated into the
analysis should be properly justified, providing stakeholders with complete trans-
parency into how the statistical results were obtained and where improvements in
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the organization lie (de Swart et al., 2013). Last but not least, Bayesian inference
can help the auditor work more e�ciently. The use of pre-existing information
means that more information is available at the start of the analysis, resulting in
a smaller required sample size or an increase in statistical precision. To aid audi-
tors with the adoption of these methods in practice, many of the chapters in this
thesis discuss and o↵er practical recommendations on how to weigh the benefits
and drawbacks of the Bayesian approach.

Second, the thesis aims to develop easy-to-use and easy-to-justify Bayesian sta-
tistical methods for parameter estimation and hypothesis testing that are specifi-
cally tailored to audit sampling. Hence, it equips auditors with the tools to employ
Bayesian inference in real-world situations. For example, it explains how to jus-
tify the use of pre-existing information in the prior distribution and the statistical
model and proposes an intuitive measure of audit evidence: the Bayes factor.
For didactic purposes, each chapter includes practical examples, data sets, and R
code, making it easy for any auditor to follow along, or to put these methods into
practice.

Third, the thesis aims to make Bayesian techniques freely available to all au-
dit practitioners via user-friendly open-source software. It describes the develop-
ment of JASP for Audit, an implementation of Bayesian (and frequentist) audit
sampling techniques in the open-source statistical software program JASP (url:
https://jasp-stats.org). By programming the fundamental Bayesian tech-
niques for audit sampling into openly accessible software, it aims to ensure that
any auditor is able to use Bayesian inference at all times.

Therefore, the thesis has practical value for a large audience, not purely audi-
tors who conduct audit sampling.

1.5 Chapter outline

1.5.1 Part I. Bayesian Parameter Estimation

The first part of the thesis centers around Bayesian parameter estimation in audit
sampling, with a particular emphasis on the use of pre-existing information.

Chapter 2 elaborates on the basic principles underlying Bayesian parameter
estimation, and discusses how information can be incorporated into the prior dis-
tribution. The key idea that this chapter introduces is that the prior distribution
enables auditors to statistically build upon pre-existing information about the
(probability of) misstatement in their sampling procedures. In this chapter, I dis-
cuss how incorporating pre-existing information into the prior distribution comes
with several practical advantages, such as a potential reduction in sample size and
an increase in transparency. Furthermore, the chapter outlines five methods to
construct a prior distribution in an audit sampling context. These prior distribu-
tions are constructed using pre-existing audit information, thus, they allow for a
sensible justification by the auditor. The chapter concludes with a discussion on
the considerations that apply to constructing a prior distribution.

Chapter 3 builds on the basic principles of Bayesian parameter estimation from
Chapter 2 and discusses how pre-existing information can be incorporated into the
statistical model. The key idea that this chapter introduces is that the statistical
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model enables auditors to statistically build upon multiple sources of data about
the population in their sampling procedures. In this chapter, I discuss how in-
corporating additional data into the statistical model comes with two advantages
for the auditor. First, it helps them form a more fine-grained opinion about the
population because they can clearly explain how the incorporated data a↵ects the
misstatement; second, it makes it easier for them to identify misstatements be-
cause they can more precisely distinguish between items in the population. The
chapter continues to demonstrate that a Bayesian generalized linear modeling ap-
proach can help the auditor to construct a statistical model for audit sampling
that aligns with the situation in practice, and that this comes with a potential
increase in e�ciency. The chapter concludes with practical recommendations for
the use of this approach in an audit context.

1.5.2 Part II. Bayesian Hypothesis Testing

The second part of the thesis centers around Bayesian hypothesis testing, with a
focus on the quantification of statistical audit evidence.

Chapter 4 discusses the concept of statistical audit evidence, and introduces
Bayesian hypothesis testing as a means to quantify statistical evidence from audit
samples. The key idea this chapter introduces is that statistical evidence can be
quantified using the Bayes factor; a measure of relative evidence comparing two
hypotheses being tested. The chapter shows that, when it comes to e↵ectiveness
and e�ciency, Bayesian hypothesis testing using the Bayes factor addresses several
practical disadvantages that come with frequentist hypothesis testing. It goes on
to demonstrate various scenarios from a modern auditing context in which the
Bayes factor can be used. The chapter concludes with practical implications of
the use of the Bayes factor in practice.

Chapter 5 outlines the development of a default Bayesian hypothesis test for
audit sampling. The Bayes factor is sensitive to the specification of the prior
distribution, however, the sensitivity of the Bayes factor to the choice of prior has
not been previously studied in the context of audit sampling. Unfortunately, prior
distributions that are tempting to use in an audit sampling context because they
are easy to justify (such as a uniform prior) can yield Bayes factors that quantify
evidence in the other direction than the data point to. This chapter introduces
an impartial prior distribution as a means to solve this problem. The statistical
motivation for the impartial prior distribution is that the resulting Bayes factor is
consistent, that is, the Bayes factor from an impartial prior distribution will always
quantify evidence for the hypothesis best supported by the data. The key idea this
chapter introduces is that an impartial Bayesian hypothesis test is appropriate for
many situations, while also being simple to use and easy to justify. The chapter
concludes with a comparison of (impartial) Bayes factors and frequentist p-values,
and discusses what this implies for auditors in practice.

1.5.3 Part III. Software Implementation

The third and final part of this thesis centers around a software implementation
of the Bayesian statistical framework for audit sampling proposed in the foregoing
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chapters.
Chapter 6 introduces JASP for Audit, an open-source statistical software pro-

gram with a graphical user-interface that implements both Bayesian and frequen-
tist statistical techniques for audit sampling. As part of this project, JASP for Au-
dit was developed as an add-on module for the existing statistical software JASP
(JASP Team, 2022), with the goal to help the auditor in the statistical aspects of
an audit. It does this by o↵ering (among other analyses) a guided workflow that
follows the familiar four-step audit sampling process, makes the correct statistical
decisions under the hood, and automatically creates an audit report containing
the statistical results and the interpretation of these results. This chapter dis-
cusses the advantages of JASP for Audit for the auditing practice and o↵ers a
detailed walkthrough of three real-world examples. The chapter concludes with
recommendations for the use of JASP for Audit in practice. Furthermore, Ap-
pendix 6.B discusses the ‘jfa’ package (Derks, 2022), an R based implementation
of the functionality provided by JASP for Audit.

The thesis is concluded with a discussion on future research directions.
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Chapter 2

Incorporating Audit Information into

the Prior Distribution

Abstract

Auditors often have prior information about the auditee before starting
the substantive testing phase. We show that applying Bayesian statistics
in substantive testing allows for integration of this information into the sta-
tistical analysis through the prior distribution. For example, an auditor
might have performed an audit last year, they might have information on
certain controls in place, or they might have performed analytical procedures
in an earlier stage of the audit. Incorporating this information directly in
the statistical procedure enables auditors to tailor their sampling plan to
the auditee, thereby increasing audit transparency and e�ciency. However,
defining a suitable prior distribution can be di�cult because what consti-
tutes a suitable prior depends on the specifics of the audit and the auditee.
To help the auditor in constructing a prior distribution we introduce five
methodologies, consider their pros and cons, and give examples of how to
apply them in practice.

Keywords: Audit, Bayesian statistics, financial statements, prior distribu-
tion.

2.1 Introduction

A financial audit is an inspection of an organization’s financial statements before
they are released to the public. In the audit report, the auditor presents their
opinion on the fairness of these statements to inform stakeholders of the organiza-
tion about its current financial situation. An organization’s financial statements

This chapter is published as Derks, K., de Swart, J., van Batenburg, P., Wagenmakers,
E.–J., & Wetzels, R. (2021). Priors in a Bayesian audit: How integration of existing information
into the prior distribution can improve audit transparency and e�ciency. International Journal

of Auditing, 25(3), 621–636. doi: https://doi.org/10.1111/ijau.12240
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are derived from several large populations of transactions (Neter and Loebbecke,
1975, 1977; Ramage et al., 1979; Titera, 2013) that, until a few decades ago, were
all assessed in detail (Power, 1992). Nowadays, technological advancements (e.g.,
big data and artificial intelligence) theoretically allow auditors to inspect these
large (digital) populations completely. However, in most businesses, the data
and business process quality would make a complete inspection result in a high
number of seemingly irrelevant audit findings (Brown-Liburd et al., 2015). More-
over, Earley (2015) and Gepp et al. (2018) argue that these techniques are only
slowly progressing in the audit practice. Recently, Yoon and Pearce (2021) argue
that such analytical procedures and statistical sampling both have unique bene-
fits, and that they are best used to complement each other. Statistical sampling
therefore remains a much-used technique due to its e�ciency in larger populations
(Christensen et al., 2015; Hitzig, 1995; American Institute of Certified Public Ac-
countants (AICPA), 2019; Maingot and Quon, 2009; Srivenkataramana, 2018; Van
Der Nest et al., 2015). After all, statistical sampling enables the auditor to infer a
conclusion about a certain characteristic of the population based on only a small
subset of this population.

The challenge that auditors routinely face is to tailor their statistical proce-
dures to the specific situation of the audit and the auditee (Brivot et al., 2018;
Coram et al., 2003; Lombardi et al., 2014). Due to variability in organizations’
administrative systems, controls, or possible malicious intent, no two organiza-
tions share the same quality of financial reporting and, thus, can be audited in
the exact same manner (Stewart, 2013; Kachelmeier et al., 2014). In this chapter,
we show that Bayesian statistics allows for this tailoring, arguably resulting in a
more transparent and more e�cient audit.

The International Standards on Auditing (ISA; International Auditing and
Assurance Standards Board (IAASB), 2018) prescribe that the auditor can use
statistical sampling to quantify the risk of an incorrect judgment resulting from
their substantive testing procedures. To conduct statistical sampling, ISA 530
mandates “the use of probability theory to evaluate sample results” (Interna-
tional Auditing and Assurance Standards Board (IAASB), 2018, paragraph 5g).
While in probability theory there are two main schools of thought, Bayesianism
and frequentism (Dienes, 2011; Wagenmakers et al., 2008), auditing firms have
mostly relied on frequentist methods to design their statistical sampling proce-
dures and substantiate their conclusions (Christensen et al., 2015). In addition,
frequentist estimation and testing have a crucial role in the accounting curriculum
of most universities (e.g., Lee et al., 2018; Touw and Hoogduin, 2012). Although
the standards’ requirements for statistical sampling cannot be found exclusively
in frequentist methods, it is clear that these methods currently dominate audit
theory and practice. However, Bayesian methods that use probability theory to
evaluate sample results may legitimately be used to make an inference in substan-
tive testing.

The auditing standards prescribe that auditors are allowed to reduce the quan-
tity of evidence that is required from substantive testing if they have existing in-
formation on an auditee that indicates a low risk profile (ISA 530, International
Auditing and Assurance Standards Board (IAASB), 2018). For the statistical
analysis, this usually translates into a reduced sample size for auditees with a
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lower risk profile. However, within the frequentist framework, it is not possible
to incorporate this existing information into the statistical methodology, except
on an ad-hoc basis (Wagenmakers et al., 2008). Frequentist methods allow the
auditor to modify their audit procedures on the basis of existing information, but
they do not allow the auditor to coherently incorporate this information into the
analysis. Because it is unclear in a frequentist analysis what the mathematical
relationship is between the existing information and the sample information it is
said to be incoherent (Lindley, 2004). As a result of this incoherency, frequentist
substantive testing procedures often expose the auditor to an audit risk that is
greater than is desired (Jiambalvo and Waller, 1984; Kinney, 1983; Stewart, 2013).

In contrast to frequentist statistics, Bayesian statistics has been continuously
advocated as a means to integrate existing information into substantive testing in a
coherent manner (Beck et al., 1985; Corless, 1972; Crosby, 1980; Felix, 1976; God-
frey and Neter, 1984; Laws and O’Hagan, 2002; Meeden, 2003; Sahu and Smith,
2006; Tsui et al., 1985). More concretely, in the Bayesian approach, the auditor
quantifies their existing information in a prior probability distribution such that
it captures the information available to them. Since the prior distribution con-
tains information that is specific to the auditee and the population, it allows for
an informed and tailor-made point of departure for substantive testing. Bayesian
statistics uses the rules of probability theory to revise the information in the prior
distribution in light of the observed sample. This approach to revising informa-
tion highlights the cumulative character of a Bayesian analysis, one on which many
scholars and practitioners have agreed is appropriate in an audit context (Kinney,
1983; Stewart, 2013) because an audit itself is a continuous process (Leslie, 1984).
Another argument why Bayesian methods are appropriate for auditors is that the
audit standards describe an audit along the lines of that same philosophy. For
example, ISA 330 states that “an audit of financial statements is a cumulative
and iterative process” (International Auditing and Assurance Standards Board
(IAASB), 2018, paragraph A60). Thus, one could argue that the Bayesian ap-
proach fits well with the audit standards and the goal of the auditor.

Despite these advantages, the use of Bayesian methods in the audit is scarce.
A potential reason for this scarcity is that auditors need to translate existing
audit information into a prior probability distribution, which is not necessarily
part of the expertise of an auditor (Corless, 1972; Felix, 1976; Martel-Escobar
et al., 2018; Stewart, 2013). First, determining the type of audit information to
incorporate into the prior distribution can be di�cult because what information
might be incorporated depends on the situation at hand. Second, the transla-
tion from relevant audit information into a prior probability distribution is per-
ceived as di�cult (Abdolmohammadi, 1985, 1987; Corless, 1972). Nevertheless,
by overcoming these hurdles the auditor can build upon existing information in a
coherent manner, resulting in concrete advantages—such as a more accurate esti-
mation of the population misstatement (Knoblett, 1970) and audit risk (Stewart,
2013), a potential reduction in sample size, and formalized predictions—that can
increase e�ciency and transparency in audit sampling. Furthermore, it has been
shown in earlier studies based on the well-known audit populations from Neter
and Loebbecke (1975) that Bayesian methods result in upper bounds that achieve
nominal coverage (Chan and Smieliauskas, 1990; Swinamer et al., 2004). To in-
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crease the feasibility of Bayesian methods in the audit practice and to make these
tangible advantages of Bayesian statistics more easily available for auditors, we will
introduce five methods for incorporating existing audit information into a prior
probability distribution. Please note that we do not see these Bayesian methods
as a replacement for frequentist methods, but rather as an e�cient addition to the
auditor’s statistical toolbox if needed.

The structure of this chapter is as follows. In Section 2.2 the three building
blocks of Bayesian inference are introduced: the prior distribution, the likelihood
and the posterior distribution. Next, Section 2.3 discusses the pros and cons
of using a prior distribution in an audit context. In Section 2.4, five methods
of constructing a prior distribution are discussed. The last section presents our
concluding comments.

2.2 The Bayesian approach to audit sampling

In audit sampling, the goal of the auditor is to make a statement about a certain
characteristic, ✓, of the population. Generally, the auditor does not inspect the
entire population but only a sample, y, from this population. As a consequence,
the information about ✓ from the sample is extrapolated to the population, intro-
ducing uncertainty and a probabilistic statement about ✓.

The Bayesian way of making a probability statement about the characteristic
✓, given the sample y, is through the posterior density p(✓ | y). The posterior
density is defined through Bayes’ theorem as the product of two densities, the
prior density p(✓) and the likelihood function l(y | ✓), conditioned on the value of
the sample y. Because the marginal probability of the data p(y) is not dependent
on ✓ and with a fixed sample it is a constant, the computation of the posterior
density is often shown as follows:

p(✓ | y)| {z }
Posterior

/ l(y | ✓)| {z }
Likelihood

⇥ p(✓)|{z}
Prior

. (2.2.1)

As Equation 2.2.1 illustrates, Bayes’ theorem implies that the information in
the prior distribution is combined with the information in the sample to form the
posterior distribution. In the following subsections, we will further elaborate on
the prior distribution, the likelihood, and the posterior distribution.

2.2.1 The prior distribution

The prior distribution p(✓) reflects the auditor’s existing information about ✓
before seeing any information from a sample. An adequate prior distribution
assigns a relative plausibility of occurrence to every possible value of ✓ such that
the probability across all possible values of ✓ is equal to one. Which values of ✓
are possible depends on the audit question at hand, and the auditor must specify
the family of the prior distribution accordingly.

For example, in monetary unit sampling (MUS) the goal is to estimate the
amount of misstatement in the population, and monetary units (e.g., individual
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dollars) are selected and evaluated as individual units. The possible values of the
total misstatement amount ✓ for a population of M monetary units therefore lie
in the interval [0; M ] and the data are generally assumed to be generated by a
Poisson distribution (Stewart, 2012). A gamma prior distribution is a common
choice for MUS (Stewart, 2013; Stewart et al., 2007) since it remains a gamma
distribution when updated by the information in the data. However, Broeze (2006,
pp. 68–71) shows that using a beta distribution as a prior distribution for MUS
is also appropriate when using the proportional errors (i.e., taints) of the trans-
actions when evaluating the sample. In the remainder of this chapter, we will
demonstrate the five methods for constructing a prior distribution using a beta
distribution because it is easy to explain. However, because in some cases pro-
portional errors are unlikely to occur, we included a discussion of the gamma
distribution in Appendix 2.A.

Because the total probability that a prior distribution assigns to all possible
values of ✓ is equal to one the prior distribution is a probability distribution, and
the auditor can summarize their prior knowledge about ✓ by calculating location
measures such as the mean, median, and mode of the distribution. For example,
the prior mode is the most likely value of ✓ before the sample is analyzed, and
the prior mean is the expected value of ✓ before the sample is analyzed. Similarly,
the auditor can summarize the spread of the prior distribution with an x-percent
interval that ranges from the (100� x)/2th percentile of the prior distribution to
the (100+x)/2th percentile. For example, the 90 percent interval [✓.05; ✓.95] implies
that, with a probability of 90 percent, the population characteristic ✓ lies between
the values ✓.05 and ✓.95. Similarly, the prior distribution can also be interpreted
with respect to the value ✓.95 as stating that with 95 percent probability, the value
of ✓ is lower than ✓.95. Therefore the value ✓.95 can be interpreted as a 95 percent
upper bound since 95 percent of the probability mass lies below this value.

In the case of a beta prior distribution, a useful interpretation is that the au-
ditor can interpret the information in the prior distribution as equivalent in infor-
mation to that of an earlier sample of n transactions containing k errors (Crosby,
1981; Steele, 1992). Since the auditor usually assumes these earlier samples to be
correct, they may be deducted from the current intended sample size, increasing
audit e�ciency (Stewart, 2013; Touw and Hoogduin, 2012).

To put the beta prior distribution in a more concrete context, consider an
example from a standard financial audit in which the characteristic of interest ✓
is generally the misstatement in the population. Suppose an auditor specifies a
Beta(1, 1) prior distribution on ✓ (Figure 2.1), implying that every value of the
(proportion of) misstatement is equally likely to occur a priori. Because this prior
distribution is flat, the interpretation of this prior in terms of a prior sample is
that the information contained in this prior is the information from a sample of
size zero.

2.2.2 The likelihood

The likelihood function l(y | ✓) reflects the information that the observed data
contain about the population characteristic ✓. It quantifies the likelihood of the
sample outcomes occurring under specific values of ✓ (Etz, 2018).
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Figure 2.1: Example of a Beta(1, 1) prior distribution on the population misstate-
ment proportion ✓. The information in the prior distribution is weighed with the
information in the sample, the Binomial(k = 0 |n = 58, ✓) likelihood, to form the
Beta(1, 59) posterior distribution.

Returning to the previous example with the Beta(1, 1) prior distribution, the
likelihood function of observing k misstatements in a sample of size n, with
an underlying error rate parameter ✓ 2 [0, 1] is Binomial(k |n, ✓). Suppose
that the auditor analyzes a sample of n = 58 observations, in which they find
k = 0 misstatements. This implies that the likelihood function of this sample is
Binomial(k = 0 |n = 58, ✓).

2.2.3 The posterior distribution

The posterior distribution p(✓ | y) reflects the auditor’s updated knowledge about
the characteristic ✓ after having inspected a sample y from the population. The
posterior distribution follows from the fact that each candidate value of ✓ from the
prior distribution induces a prediction about the observed data. Comparing the
quality of these predictions from the prior distribution with the actual observed
data induces a prediction error. Given the inspected sample y, some values of ✓
have a lower prediction error than other values. It is this prediction error that holds
information about the extent to which the data ought to adjust the plausibility of
di↵erent values for ✓, since the prediction error measures the discrepancy between
the auditor’s prior information and the information from the sample. Bayes’ rule
stipulates that values of ✓ that predict the sample relatively well receive a boost
in plausibility, whereas values of ✓ that predict the sample relatively poorly su↵er
a decline. By assessing predictive accuracy for the candidate values of ✓ the prior
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distribution is updated to the posterior distribution, which consequently contains
all information about ✓ that is available to the auditor.

Because the posterior distribution is a probability distribution the updated
knowledge about ✓ can be assessed by location measures such as the mean, median,
and mode of the posterior distribution. For example, the auditor can make a
statement about the most likely error in the population by looking at the mode of
the posterior distribution. Similarly, percentiles of the posterior distribution can
be interpreted in terms of probability (Hoekstra et al., 2014; Kruschke and Liddell,
2018). For instance, a Bayesian auditor will typically say that, with 95 percent
certainty, the misstatement in the population is lower than the 95th percentile of
the posterior distribution, ✓.95, since 95 percent of the probability mass lies below
this value of ✓.

In Figure 2.1 the mode of the posterior distribution is 0

58
= 0, implying that

the most likely misstatement in the population is zero percent. The posterior
mean is 0.017, implying that the expected misstatement in the population is 1.7
percent. The 95th percentile of the posterior distribution lies at 0.049 meaning
that, with 95 percent probability, the misstatement in the population is lower than
4.9 percent.

2.3 Pros and cons of the prior distribution

Using the prior distribution as a point of departure for substantive testing increases
transparency and e�ciency for both the auditee and the auditor. However, this
comes at the cost of justifying the prior distribution.

2.3.1 Pro 1: The prior distribution increases transparency for

the auditor

Currently, when the auditor wants to incorporate existing information into their
frequentist analysis, they must do so in a manner that is not fully transparent.
For instance, the auditor can “use the Audit Risk Model (ARM) to subjectively
multiply the risk of material misstatement by the risk of incorrect acceptance of
an hypothesis to arrive at an incoherent hybrid overall audit risk” (Stewart, 2013,
p. 24).

Bayes’ theorem, which explains how existing information is revised by sample
evidence, can coherently incorporate this existing information in the prior distri-
bution and update it using the observed sample outcomes. The use of Bayes’ rule
to intuitively show how the information in the prior distribution is updated by
the sample to the information in the posterior distribution has the potential to
improve transparency towards auditors.

2.3.2 Pro 2: The prior distribution increases transparency

towards stakeholders

Using the prior distribution as a point of departure for substantive testing increases
transparency towards the auditee because it requires auditors to be explicit about
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what information is incorporated into their analysis, and under which assumptions
this information is translated into a probability distribution. We believe that this
results in two concrete benefits for the auditee.

Firstly, the prior distribution encourages the auditor to quantify their assur-
ance at the highest possible level of the organization as much as possible (de Swart
et al., 2013). Business processes at the top of the auditee’s organization often pro-
vide assurance over processes lower in the organization. Therefore, by spending
more e↵ort on obtaining assurance from top-level processes the auditor can achieve
a substantial increase in e�ciency in a later stage of the audit, potentially low-
ering audit fees for the auditee. This is also beneficial for the auditee because
it places the auditor in a position where they are able to suggest concrete im-
provements to the auditee at the highest levels of the organization, for example
to improve e�ciency in later audits. Moreover, the auditee may be inspired to
conduct audit activities to incorporate information obtained by the auditor in the
audit themselves next year.

Secondly, the prior distribution enables the auditor to optimize their mix of
internal controls, analytical procedures, and substantive testing every year. Im-
portantly, the auditee is able to review, verify, or scrutinize the information and
controls used by the auditor to construct the prior distribution. For example, the
auditee can point out relevant controls to the auditor that have not been included
in the prior distribution, or they can provide additional assurance to the audi-
tor by performing analytical procedures themselves. From the perspective of the
auditee, the use of the prior distribution by the auditor provides insight into the
services paid for and provided.

In the following section, we give several examples of how to e�ciently incor-
porate existing information and make the underlying assumptions explicit.

2.3.3 Pro 3: The prior distribution allows for improved

estimation of the misstatement (and can reduce sample

size)

If the auditor can justify incorporating appropriate prior information, then this
will result in an increasingly precise estimate of the misstatement due to the
extra knowledge that is used in the estimation procedure. Moreover, if this prior
information implies a reduction in risk profile, incorporating this information into
the prior distribution will result in a reduction of the sample size needed to get to
the desired assurance about ✓.

To illustrate, if a prior distribution is applied that contains almost no infor-
mation about values of ✓ (e.g., the Beta(1, 1) prior distribution in Figure 2.1),
almost all information required to arrive at a reasonable assurance about ✓ comes
from the information in the sample. Alternatively, if a prior distribution is applied
that contains appropriate, risk-reducing, information about ✓, less information is
needed from the sample to arrive at a reasonable assurance about ✓. The top
panel in Figure 2.2 illustrates this interchangeability between the incorporated
prior information and the information from substantive testing.
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As an example, the bottom left panel displays the noninformative prior dis-
tribution and the posterior distribution from the previous section. After seeing
an error-free sample of 58 transactions, the 95 percent posterior upper bound
in this case is 4.9 percent. The bottom right panel shows a scenario in which
the auditor has access to appropriate audit information, through which they con-
structed an informative Beta(1, 19) prior distribution. In the scenario in which
the informative prior is constructed, the auditor only needs to inspect a sample
of 40 transactions, which amounts to a reduction of 18 transactions as compared
to the scenario in which the noninformative prior was constructed. Note that in
the informative scenario, combining the informative Beta(1, 19) prior with the
Binomial(k = 0 |n = 40, ✓) likelihood of the sample, the posterior distribution is
again a Beta(1, 59) distribution whose 95 percent upper bound lies at 4.9 percent.

Likelihood from substantive testing

Evidence from prior

Incorporated prior information

Audit effort
Substantive testing Pre-substantive testing

Figure 2.2: The top panel illustrates the balance between the amount of incorpo-
rated prior information and the required information (likelihood) from substantive
testing. The Beta(1, 1) prior distribution in the bottom left panel contains lit-
tle prior information and combined with a Binomial(k = 0 |n = 58, ✓) likelihood,
forms a Beta(1, 59) posterior distribution. The Beta(1, 19) prior distribution in the
right panel contains more information and therefore requires less information from
a sample to reach the same assurance. Combined with a Binomial(k = 0 |n = 40,
✓) likelihood, the posterior distribution is again a Beta(1, 59) distribution.

The latter scenario demonstrates the added value of the prior information
since the auditor requires less information from substantive testing to arrive at
the same amount of assurance about ✓. Incorporating appropriate information
into the prior distribution can, therefore, increase e�ciency and transparency in
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the audit by coherently reducing the required sample size in substantive testing.
The assumptions behind a noninformative prior distribution are quick to justify,
but the absence of information contained therein results in a larger sample size
than may be necessary.

2.3.4 Con 1: Justification of the prior distribution takes time

and e↵ort

An informative prior distribution is e�cient in the sense that it allows for improved
estimation of the misstatement and a potential reduction in sample size. However,
the auditor must realize that the information that is incorporated into the prior
distribution needs to be justified. Hence, the more information that is incorporated
into the prior, the more work is required to substantiate why the incorporated
information is appropriate for the population, and how it is incorporated into the
prior distribution. Attention should be given to the amount of time and e↵ort
it takes to substantiate the information in the prior distribution for a substantial
reduction in audit work versus the time and e↵ort it takes to perform the reduction
in audit work. Performing the Bayesian analysis makes most sense if the profit
of the Bayesian analysis—the time and e↵ort that is saved by reducing in sample
size—outweighs the costs—the time and e↵ort it takes to justify the Bayesian
analysis.

Whether the pros of constructing a prior distribution outweigh its cons depends
on the time and e↵ort it takes to select and audit an extra sample. If the costs of
selecting an extra sample exceed the time and e↵ort to set up an informative prior
distribution, a Bayesian analysis can be a profitable alternative to a frequentist
analysis. For example, suppose that the auditor is performing an on-site indoor
air quality audit (e.g., Asadi et al., 2013) for the auditee’s o�ce buildings around
the world. They have the choice of either taking a large sample or performing an
analytical procedure to construct the prior distribution. The analytical procedure
in question correlates a building’s air quality with its energy consumption, data
which is available in digital format to the auditor. Of course, constructing the
prior distribution on the basis of this correlation is not a trivial task and might
take substantial time and e↵ort. However, because the auditee has o�ces all
around the world, travelling to—and inspecting—each building takes a significant
amount of time and money. In these cases, it is likely that the possible reduction
in sample size achieved by the information from the correlation analysis outweighs
the time and e↵ort that goes into specifying the prior distribution. Even if the
auditor has easy access to the auditee and therefore decides that constructing
the prior distribution is not worth the time and e↵ort, they can fall back to a
prior distribution that incorporates no existing information. The advantage of the
Bayesian approach is that it provides the auditor with the flexibility to choose
either of these options.

Finally, we are aware that the prior distribution is often perceived as di�cult
to construct and that this can be seen as a con as well. However, in the next
section we attempt to resolve this by showing five methods of constructing a prior
distribution. The specification of the prior distribution is complex because the
available information must be represented by a probability distribution. Earlier
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work on prior distributions in an audit context has mainly focused on eliciting one
directly from auditors’ professional judgment (Abdolmohammadi, 1985, 1987). For
instance, Chesley (1978) asked auditors to assign probabilities to specific values
of ✓ (i.e., by eliciting a cumulative probability function). A reversed method was
examined by Crosby (1981), who asked auditors to assign specific values of ✓ to
probabilities (i.e., by eliciting values for the first, second, and third quartile of
a probability density function). Such methods allow for coherent integration of
expert knowledge about ✓ into the analysis, but require that the auditor has an
advanced understanding of statistical concepts (e.g., probability distributions),
something that is not necessarily part of an auditor’s core expertise.

In the following section, we provide alternatives to such expert elicitation meth-
ods by discussing how various other sources of audit information can be formally
incorporated into the prior distribution. The proposed methods provide a logical
translation from audit information to a prior distribution, thereby making the
specification of the prior distribution less daunting and complex for the auditor.
Moreover, we have implemented these methods in statistical software so that they
are available to auditors who are not experts on statistics but are willing to use
the software approved by their technical o�ce. This way, constructing a prior dis-
tribution on the basis of their already existing information requires no additional
time and e↵ort from the auditor. We show that these methods have the potential
to increase audit e�ciency and transparency.

2.4 Integrating information into the prior distribution

We discuss five methods for integrating existing information into the prior distri-
bution. The first method is not informative about the characteristic ✓, whereas the
other four methods integrate four types of information about ✓ into correspond-
ing prior distributions: information regarding the prior probability of (in)tolerable
misstatement occurring in the population, information from earlier (implicit) sam-
ples, historical information from last year’s audit, and information from analytical
procedures. For ease of explanation, the following methods assume that the au-
ditor does not expect to find any misstatements in the sample. Note that the
calculations are very similar when misstatements are expected (the resulting sam-
ple sizes would of course be di↵erent).

2.4.1 Method 1: No explicit information

The auditor can refrain from expressing an explicit opinion about ✓ by incorporat-
ing as little information as possible in the prior distribution, so that the resulting
posterior distribution relies solely on the information from the sample (Blocher,
1981; Martel-Escobar et al., 2018). Consider the scenario in which the auditor has
no access to any existing information about which values of ✓ are more plausible
a priori. Then, a suitable prior distribution is the previously introduced Beta(1,
1) distribution as it assigns equal prior probability mass to all values of ✓, and
the posterior mode (most likely misstatement) is k

n , which is equal to that of a
frequentist approach (Albert, 2003; Tuyl et al., 2008).
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Although the Beta(1, 1) distribution is often a default choice due to its connec-
tion to frequentist methodology and its ease of application, it implies a conservative
prior opinion about ✓ with respect to the upper bound of tolerable misstatement
in the population. More specifically, the Beta(1, 1) distribution expresses the
prior opinion that intolerable misstatement is highly likely to occur in the popu-
lation. To illustrate, for an upper bound of tolerable misstatement of 5 percent,
the Beta(1, 1) prior distribution assumes that, with 95 percent probability, the
total misstatement in the population is larger than the upper bound of tolera-
ble misstatement. If this reflects the auditor’s true existing information about
the misstatement in the population, a full inspection might arguably be a better
choice.

By choosing a flat distribution no information is incorporated into the prior
distribution. Therefore, the Beta(1, 1) prior distribution is not advised when
the auditor has access to information about the characteristic ✓. However, it
can be useful in situations where the auditor, for conservative reasons, wants to
specifically refrain from expressing an opinion about ✓, wants to retain some of the
properties of a frequentist analysis, or when the auditor wants to have a benchmark
analysis for a more informed Bayesian analysis.

2.4.1.1 Example to detect overstatements

Suppose the auditor must audit a new client and wants to determine the mis-
statement ✓ in a population. Because they are auditing a new client and do not
have access to existing information about this population, they want to state a
noninformed opinion with respect to ✓. Since the prior distribution contains no
information about ✓, there is no need for the auditor to justify the information in
the prior distribution.

Prior to calculating a sample size, the auditor makes an assessment of the
expected (tolerable) errors in the sample. Assuming a Beta(1, 1) prior distribution,
and applying Bayes’ theorem to find the minimum sample size nMethod 1 such that
if no errors are detected in the sample, the posterior distribution has a 95 percent
upper bound of 5 percent, the auditor finds nMethod 1 = 58. Using the Beta(1, 1)
prior is slightly more e�cient than a frequentist analysis, in which the auditor must
inspect nfreq = 60 observations to reduce the sampling risk su�ciently (American
Institute of Certified Public Accountants (AICPA), 2019). However, the posterior
most likely error resulting from a Beta(1, 1) prior distribution is equal to that of
a frequentist analysis, and is zero after seeing this error-free sample.

2.4.2 Method 2: Information about the probability of

(in)tolerable misstatement

The auditor can incorporate existing information regarding the prior probability of
(in)tolerable misstatement occurring in the population in the prior distribution on
✓. In contrast to the expected misstatement, the probability of misstatement rep-
resents the auditor’s assessment about how likely it is that the population contains
material misstatement. Auditors generally state their opinion on the population
misstatement using the posterior most likely error (ISA 450, ISA 530; Interna-
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tional Auditing and Assurance Standards Board (IAASB), 2018) after they have
assessed that their work was su�cient for such statement by comparing the up-
per bound of the posterior distribution to the performance materiality ✓max (ISA
320; International Auditing and Assurance Standards Board (IAASB), 2018). We
propose to use the value of ✓max as an anchoring point for the prior distribu-
tion. Anchoring the prior distribution on the performance materiality allows the
auditor to exploit the areas under the prior distribution above and below ✓max.
These areas respectively express the prior information about the probability of
the population misstatement being tolerable or not before a sample is selected
and analyzed.

When using a beta distribution, the area under the prior distribution that lies

below the performance materiality P� =
R ✓max

0

✓↵�1
(1�✓)��1

B(↵,�) d✓ quantifies the prior
probability of tolerable misstatement occurring in the population, while the area

that lies above the performance materiality P+ =
R
1

✓max

✓↵�1
(1�✓)��1

B(↵,�) d✓ quanti-
fies the prior probability of intolerable misstatement occurring in the population.
Given the auditor’s existing information about the probability of (in)tolerable mis-
statement occurring in the population, and given the expected misstatement in
the sample, the ↵ and � parameters of the beta prior distribution are defined.

To illustrate how anchoring works in this context, suppose the auditor sets the
performance materiality at 5 percent (✓max = 0.05). Furthermore, they expect to
find no misstatements in the sample (implying that the prior parameter ↵ = 1)
and assume a priori that tolerable misstatement is equally plausible to occur in the
population as intolerable misstatement (implying that P� = P+ = 0.5). Since the
prior probability of (in)tolerable misstatement is specified by the area under the
prior distribution, equal prior probabilities can be achieved by setting the median
of the beta distribution to the performance materiality ✓max. When ↵ = 1, the

median of the beta distribution can be expressed as ✓max = ✓.50 = 1 � 2�
1
�

(Kerman, 2011). Consequently, the � parameter of the prior distribution can

be determined as � = ln(P+)

ln(1�✓max)
= ln(0.5)

ln(1�0.05) = 13.51. Therefore, the auditor’s

existing information regarding the prior probability of (in)tolerable misstatement
occurring in the population is incorporated into a Beta(1, 13.51) distribution.

2.4.2.1 Example to detect overstatements

We will now apply this method to a practical example from Harrison et al. (2002).
The auditee has an internal control where software verifies the general ledger for
transactions created by employees in the field. The auditor has information that
on days that show a high sales activity across the country, one of the employees
can disable the control system to get orders processed faster. To gain assuring
evidence that the general ledger contains no material misstatement, the auditor
might perform substantive testing of transactions that were recorded on days where
the control was disabled. Suppose the auditor finds that this control is a critical
check for 60 percent of all sales transactions, and so 60 percent of sales transactions
made on the days that the system was disabled was not checked.

The prior distribution can be justified by the existing information that 60
percent of the transactions in the population might contain misstatement. Thus,
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the auditor wants to incorporate the existing information that the prior probability
of intolerable misstatement is 60 percent. The auditor specifies P+ = 0.6 and plans
for zero tolerable deviations, thereby assuming a Beta(1, 9.96) prior distribution.

Applying Bayes’ theorem to find the sample size nMethod 2 such that if no
errors are detected in the sample, the posterior distribution has a 95 percent
upper bound of 5 percent, the auditor finds nMethod 2 = 49. Compared to the
benchmark Bayesian analysis (method 1) this method results in a reduction in the
sample size of n = 9. Compared to the standard frequentist method where no
prior information is incorporated the reduction in sample size amounts to n = 11.

2.4.3 Method 3: Information from earlier samples

The auditor can incorporate information from a prescribed reduction in the re-
quired sample size in the prior distribution on ✓. Consider for example the scenario
where the auditor can reduce their required sample size based on the risk assess-
ment of the population, as determined by their audit guide. Since the information
in the prior distribution can be interpreted as equivalent to that of an earlier
sample, the auditor can use the reduction in sample size to construct their prior
distribution (de Swart et al., 2013; Steele, 1992).

An application for this method can be found in the auditing standards, which
state that the auditor may act on their collected audit information through the
audit risk model (ARM) by reducing their required sample size in substantive
testing (International Auditing and Assurance Standards Board (IAASB), 2018).
The ARM provides an association between the specified audit risk and the assessed
risk of material misstatement; see Equation 2.4.1.

Audit risk = Inherent risk⇥ Control risk⇥Detection risk (2.4.1)

According to the ARM, the audit risk is divided into three constituents: in-
herent risk, control risk and detection risk. Inherent risk is the risk of a material
misstatement due to an error in a financial statement before consideration of any
related controls. Control risk is the risk of a material misstatement not prevented
or detected by the internal control systems of the auditee (e.g., computer-managed
databases). Detection risk is the risk that an auditor will fail to find material mis-
statements that exist in the auditee’s financial statements. According to the ARM,
the auditor is only involved in the detection risk and may adjust this accordingly
to accommodate the other two risks so that the acceptable level of audit risk is
retained. Therefore, a lower assessed risk of material misstatement may allow a
higher tolerable detection risk and, in turn, requires less persuasive audit evidence
(International Auditing and Assurance Standards Board (IAASB), 2018). ISA 330
and ISA 530 prescribe that a lower quantity of evidence from substantive testing
applies in these situations.

Currently, it is unclear how risk assessments can reduce the required sample
size. Sampling manuals from audit firms and other institutions that perform
substantive testing show a large variation in the extent to which reliance on risk
assessments reduces the required sample size. Table 2.1 displays examples of the
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sample size reduction factor R (Touw and Hoogduin, 2012). To calculate R we
need—for a given upper bound of tolerable misstatement—n+: the largest sample
size in the manual, and n�: the smallest. The largest sample size n+ is often the
same number, based on 95 percent confidence and zero expected misstatements in
the sample. The smallest sample size n� is based on the assumption of a low risk
of material misstatement and a system of internal controls that functions well. Of
course, the words ‘low’ and ‘well’ are subjective, and therefore, the number n�

varies when di↵erent audit sampling manuals are considered (see Table 2.1). By
incorporating their risk assessments through the prior distribution, the auditor
is able to make the relationship between these risk assessments and the required
sample size explicit.

Table 2.1: The sample size reduction factor R = n+/n� in various audit manuals.

R
Big 4 o�ce 15
NL public body 2.7
EU public body 3
NL tax and customs 8
NL Tier2 o�ce 3

Table 2.1 shows that a reduction in sample size is common practice, and pre-
scribed by the ISA. As explained at the beginning of this section, this reduction
�n = n+ � n� can be incorporated in the prior distribution (assuming that the
unseen samples contain no misstatements). More specifically, if the auditor ex-
pects no misstatements in the sample then ↵ = 1. Next, �n can be incorporated
into the beta prior distribution by setting the � parameter of the prior distribution
to 1 + �n. For example, if the auditor, based on their assessments of inherent
risk and control risk, has reduced the required sample by 20 transactions, this
information is incorporated in a Beta(1, 21) prior distribution.

Vice versa, instead of constructing the prior distribution based on a reduction
in the sample size, the prior distribution can also be constructed on the basis of a
sample that is already analyzed. Suppose that the auditor has taken the required
sample containing 58 transactions, but found one deviation and therefore cannot
conclude with 95 percent certainty that the misstatement is lower than the per-
formance materiality of 5 percent. The posterior distribution in this scenario is
a Beta(2, 59) distribution, which has its 95th percentile at 7.6 percent. However,
instead of judging that the population contains material misstatement, the auditor
wants to perform additional testing on the population. By using the posterior dis-
tribution as a prior distribution for a second sample, the auditor can extend their
analyzed sample without any penalty (Dienes, 2011; Rouder, 2014; Wagenmakers
et al., 2008). This is di↵erent than in a frequentist approach, where the auditor is
unable to coherently extend testing of their analyzed sample while preserving the
intended audit risk. Using the Beta(2, 59) posterior distribution as a prior dis-
tribution, the auditor can maintain the required assurance on ✓ by inspecting 33
extra error-free samples from the population. These 33 samples together with the
58 original samples coherently add up to n = 91, the sample size that is required
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when using a Beta(1, 1) distribution and planning for one expected misstatement
in the sample.

2.4.3.1 Example to detect overstatements

Suppose an auditor is testing for an upper bound of tolerable misstatement of 5
percent and is planning for zero expected misstatements in the sample. Further-
more, suppose that their audit guide prescribes a sample of 58 transactions when
both inherent risk and control risk are high. However, the auditor has collected
evidence that both inherent risk and control risk can be judged as medium instead
of high. When both risks are judged as medium, their audit guide postulates that
the required sample size for zero expected misstatements is 32.

The prior distribution can be justified by the reduction in required sample size.
Using the reduction in the required sample size, the auditor specifies � = 1+�n =
27, and arrives at a Beta(1, 27) prior distribution.

Using the Beta(1, 27) prior distribution, and applying Bayes’ theorem to find
the sample size nMethod 3 such that if no errors are detected in the sample, the
posterior distribution has a 95 percent upper bound of 5 percent, the auditor again
finds nMethod 3 = 32. Compared to the benchmark Bayesian analysis (method 1),
the reduction in sample size is n = 27. Compared to the standard frequentist
method where no prior information is incorporated the reduction in sample size
amounts to n = 29.

2.4.4 Method 4: Information from last year’s audit

The auditor can incorporate information from last year’s results in the prior dis-
tribution on ✓. A method for letting this historical information inform the current
audit is suggested by van Batenburg and Kriens (1989), who consider last year’s
posterior distribution as a point of departure. If the result of last year’s audit
was positive, this posterior distribution generally has its 95 percent upper bound
below the performance materiality. Assuming the auditor wants to exploit the
information collected in year t � 1 in the prior distribution for year t, it is rea-
sonable to state a prior distribution on ✓ for year t that is equal to the posterior
distribution of year t� 1.

Using the posterior distribution from year t� 1 directly as a prior distribution
for year t implies that the estimated maximum misstatement in the population is
already lower than performance materiality being the required maximum tolerable
misstatement. The justification for such a prior distribution is grounded in the
case where the population from year t is the same as that of year t � 1. No
additional samples would be required to achieve the required assurance about
✓. Of course, the auditor shall have to decide the extent to which last year’s
population is compatible with that of this year. The assumption that the two
are completely equivalent usually does not hold, as the population in the current
year will only be comparable to that of the previous year to a certain extent.
However, customer, product, quantity, and price of certain transactions might be
equivalent, and the auditor can incorporate the extent of this equivalence in the
prior distribution on ✓.
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To quantify the auditor’s knowledge on the equivalence of the populations
in year t and year t � 1 a weighting factor f can be introduced to the beta
prior distribution (van Batenburg et al., 1994). If the auditor finds that the
two populations are comparable, they can assign a higher weight to the results of
last year’s audit and the value for f should fall close to one. For example, if 70
percent of the transactions in the general ledger consists of transactions that are
equivalent (with respect to the customer, product, quantity, and price) to those
that were audited in last year’s audit, the auditor can specify f = 0.7. However, if
they think that the populations are incomparable, the value for f should fall close
to zero. For example, suppose major errors were found in year t�1 after which the
auditee implemented controls that make it very unlikely that these errors occur in
year t. Since the major errors in the population of year t� 1 are unlikely to occur
in the population of year t, the information from year t � 1 should be taken into
account limitedly. This is reflected in a low prior probability for this information.

To illustrate this method, suppose the auditor has access to last year’s posterior
distribution Beta(↵t�1, �t�1), which has its 95th percentile below the performance
materiality. Given a value for f , the corresponding prior distribution can be
determined as Beta(1 + (↵t�1 � 1)⇥ f , 1 + (�t�1 � 1)⇥ f).

2.4.4.1 Example to detect overstatements

Suppose last year the auditor performed substantive testing without incorporating
any existing information. They inspected a full sample of 58 records and found
that zero transactions were misstated. The posterior distribution from year t� 1
is a Beta(1, 59) distribution, which has its 95th percentile at 0.049. Consequently,
the auditor inferred that, with 95 percent confidence, the misstatement in the
population was below the upper bound of tolerable misstatement of 5 percent.

The prior distribution can be justified by the equivalence between the popula-
tions of last year and those of the current year. This year, the auditor has collected
information that the populations of last year and this year are comparable to the
extent of 60 percent (f = 0.6) since 60 percent of customers, products, quantity,
and price are equivalent. New customers in the population (40 percent) have not
been subject to the validated controls of last year. Therefore, the auditor specifies
f = 0.6 and determines � = 35.8.

Using a Beta(1, 35.8) prior distribution, and applying Bayes’ theorem to find
the sample size nMethod 4 such that if no misstatements are detected in the sample,
the posterior distribution has a 95 percent upper bound of 5 percent, the auditor
finds nMethod 4 = 23. Compared to the benchmark Bayesian analysis (method 1)
this method results in a reduction in the sample size of n = 35. Compared to
the standard frequentist method where no prior information is incorporated the
reduction in sample size amounts to n = 37.

2.4.5 Method 5: Information from analytical procedures

The auditor can incorporate information from analytical procedures (e.g., a bench-
mark analysis) in the prior distribution on ✓. In the previously discussed methods
of constructing a prior distribution based on existing knowledge, we have described
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the procedure by which this knowledge can be translated into the prior distribu-
tion. However, there is no such clear procedure for information acquired from
analytical procedures, since these procedures can vary strongly depending on the
type of information that is incorporated in the prior. The following approach
thus necessitates a stronger substantiation of its data and assumptions, and how
these assumptions are incorporated into the prior distribution. However, given
the increasing availability of big data from other sources than the general ledger,
such as sensor data or financial data from external vendors, we foresee that the
possibility to apply a wide range of analytical procedures will grow rapidly in the
near future. Bayesian methods o↵er a way to stack these procedures and deter-
mine how much additional comfort is needed from substantive testing to come to
a reasonable conclusion about ✓.

2.4.5.1 Example to detect overstatements

For example, Stringer and Stewart (1986) introduced statistical techniques to as-
sess potential misstatements based on, for instance, regression models. A concrete
example of such a model is benchmarking the relationship between sales and costs
of sales within the auditee’s industry sector. This relationship can be modelled by
a linear equation:

C = �0 + �1 · S + ✏, (2.4.2)

where C and S denote the auditee’s Cost of Sales and Sales, respectively. In prac-
tice, this relationship is often more complex than is presented in Equation 2.4.2,
and the auditor must carefully construct and evaluate the applied regression
model. However, for ease of understanding we will continue our example with
this simplified model.

After estimating the parameters �0 and �1 from a data set consisting of values
of C and S for peer companies, the auditor must check the assumptions underlying
their linear regression. If these assumptions hold, the prediction for the costs of
sales of the auditee, given the actual sales of the auditee, can be derived in the
form of a normal probability distribution. In a typical analytical procedure, this
prediction of the cost of sales is summarized in the form of a 90 percent two-sided
interval. Next, the auditor verifies whether the booked cost of sales by the auditee
falls within the predicted interval. If it does, then less evidence from substantive
testing is required than if the booked cost of sales falls outside of the predicted
interval.

The procedure described above is a frequentist one. However, similar proce-
dures within the Bayesian philosophy have been proposed before. For instance,
Deakin and Granof (1974) and Kinney and Bailey (1976) noted that regression
analysis can be used to revise the auditor’s prior probabilities of the population
being misstated or not by testing whether the auditee’s booked cost of sales is
di↵erent from the predicted cost of sales.

The prior distribution can be justified by the data and the auditee’s numerical
prediction of the cost of sales. In this analytical procedure, our proposal for the
prior distribution on ✓ is to use the relative error distribution from the linear
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regression. The relative error distribution is the normal distribution (Normal(µ,
�)) that captures the uncertainty of the prediction of the cost of sales by means
of the linear regression, scaled to be a percentage of the total cost of sales. The
mean µ of the prior distribution on ✓ is the relative deviation of the auditee’s
booked cost of sales when compared to the predicted cost of sales according to

the benchmark data C�Ĉ
C . The standard deviation of the prior distribution on

✓, induced by the benchmark data, is expressed by the standard deviation of the
distribution of ✏. We propose to use this distribution as the prior distribution on
✓ to quantify the amount of substantive testing needed on top of this analytical
procedure to conclude that the audit risk is su�ciently small enough.

Suppose that the auditor is assessing the risk of including fraudulent bribery
payments at the auditee’s organization. To perform an audit of the payments, the
auditor needs to investigate both the auditee’s costs of sales and their actual sales.
The sum of the booked costs of sales is $223,994,405 and the sum of the sales is
$298,112,312, respectively. The allocated performance materiality has been set
to $112,500, or 5 percent of the booked cost of sales. The existing information
is a benchmark of audited figures on the cost of sales and actual sales of peer
companies (n = 100) in the auditee’s industry group. These benchmark data are
plotted in Figure 2.3.
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Figure 2.3: Scatter plot of the cost of sales C (million $) versus the actual sales S
(million $) for peer companies of the auditee. The blue and red dot indicate the
auditee’s booked and expected costs of sales based on the benchmark, respectively.
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The auditor estimates the parameters in Equation 2.4.2 using linear regression
leading to �0 = 241, 300 and �1 = 0.7366. This gives the following estimate Ĉ of
the auditee’s costs of sales:

Ĉ = $241, 300 + 0.7366S = $219, 817, 866. (2.4.3)

The auditor confirms that ✏ is normally distributed having a standard devia-
tion of �✏ = $11, 090, 408. Assuming that the benchmark data is representative
for the auditee, the auditor can incorporate the information from this bench-
mark in the Normal(µ, �) prior distribution on ✓. The mean µ of the prior
distribution on ✓ is the relative deviation of the auditee’s booked costs of sales
when compared to the predicted cost of sales according to the benchmark data
C�Ĉ
C = 223,994,405�219,817,866

223,994,405 , and equals 1.9 percent. The standard deviation �

of the prior distribution on ✓ can be determined as �✏
C = 11,090,408

223,994,405 , and is 5 per-
cent. Since the auditor is focusing on overstatements only, the prior distribution
is truncated to the interval [0; 1]. Finally, the auditor has arrived at the truncated
Normal(0.019, 0.05) distribution as the prior distribution on ✓.

Applying Bayes’ theorem to find the sample size nMethod 5 such that, if no
errors are detected in the sample, the posterior distribution has a 95 percent
upper bound of 5 percent, the auditor finds nMethod 5 = 50. Compared to the
benchmark Bayesian analysis (method 1) this method results in a reduction in the
sample size of n = 8. Compared to the standard frequentist method where no
prior information is incorporated the reduction in sample size amounts to n = 10.

Keeping in mind that there are in principle infinite possibilities to use all sorts
of data and statistical learning methods to create prior distributions, this approach
is much more generic than those in the previous sections. The only restriction on
the statistical learning method used in the analytical procedure is that this method
not only delivers a most likely value for the audited figure but also a probability
distribution of the method’s error. The commonly used linear regression certainly
meets this requirement. However, by using validation samples next to training
samples, even nonparametric methods can be equipped with a way to derive a
probability distribution for the error, so we do not see this restriction as a severe
one.

2.4.6 Comparison of posterior distributions

To illustrate the e↵ect of incorporating the existing information from the previ-
ous subsections on the auditor’s final judgment about ✓, Figure 2.4 shows each
of the prior distributions (left panel) and their corresponding posterior distribu-
tions (right panel) after inspecting a sample of 30 transactions, of which zero
transactions were misstated. The figure illustrates that prior distributions that
incorporate increasingly stronger audit information (i.e., assign more prior proba-
bility mass to lower values of ✓) result in posterior distributions that assign more
probability mass to lower values of ✓.

Table 2.2 shows the posterior mode ✓mle, the corresponding 95 percent upper
bounds of the posterior distributions ✓.95, and the margin of error of the estimate
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Figure 2.4: Prior distributions (left panel) and posterior distributions (right panel)
for each of the five discussed methods after inspecting a sample of n = 30 trans-
actions, of which k = 0 contained a misstatement. As can be seen from the figure,
prior distributions that initially assign more probability mass to lower values of
✓ also result in posterior distributions that assign more probability mass to lower
values of ✓.

Table 2.2: Description of prior distributions and the corresponding posterior
distributions after taking a sample of n = 30, k = 0. Each of the Beta(↵,
�) prior distributions is combined with a Binomial(k = 0 |n = 30, ✓) likeli-
hood to form a Beta(↵ + k, � + n � k) posterior distribution. The truncated
Normal(µ, �) prior distribution has no analytical solution for the combination
with a Binomial(k = 0 |n = 30, ✓) likelihood and the posterior distribution is
therefore determined via Hamiltonian Monte Carlo (HMC) sampling. The mean
of the HMC samples is given as the posterior mode ✓mle.

Method Prior Posterior ✓mle ✓.95 ✓.95 � ✓mle

1 Beta(1, 1) Beta(1, 31) 0 0.0921 0.0921
2 Beta(1, 9.96) Beta(1, 39.96) 0 0.0722 0.0722
3 Beta(1, 27) Beta(1, 57) 0 0.0512 0.0512
4 Beta(1, 35.8) Beta(1, 65.8) 0 0.0445 0.0445
5 Truncated Normal(0.019, 0.05) 0.0243 0.0660 0.0417

✓.95 � ✓mle (i.e., the di↵erence between the upper bound and the mode of the
posterior distribution). Compared to the benchmark Bayesian analysis in method
1, the other prior distributions result in a more precise estimate of the population
misstatement. Moreover, as can be seen from the 95 percent upper bounds, only
the posterior distribution described in method four has its 95th percentile below
5 percent, and thus supports the statement that the population misstatement is,
with 95 percent probability, lower than the performance materiality of 5 percent.
The prior distribution from this example incorporates relatively strong audit infor-
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mation since it assumes that 60 percent of all transactions in the population were
equivalent to those of last year with respect to customer, product, quantity, and
price. Table 2.2 also shows that the most likely error is often estimated to be zero,
except for the most likely error resulting from the prior constructed in method
five. That is because, even though the prior distribution incorporated assuring
audit information, it also assumed a prior most likely error of 1.9 percent.

2.5 Concluding comments

Over the years, there has been a need for e�cient use of expert knowledge and
existing information in audit data analytics (Appelbaum et al., 2017; Chesley,
1975). We have shown that applying Bayesian statistics allows for incorporation
of this knowledge and information into the statistical analysis. Next, we have
outlined five methodologies that auditors can use to incorporate this information
into a prior distribution. We are convinced the auditor can only face the grow-
ing challenges of today’s auditing field, ensuring maximum audit quality while
maintaining high e�ciency, by tailoring their audit specifically to the situation of
the auditee. Bayesian statistics allows for coherent incorporation of many sources
of acquired audit information into the statistical sampling procedure, allowing
auditors to build on existing information, and o↵ering them the flexibility to con-
trol how they arrange their activities to aggregate audit evidence over the audit
as a whole. Especially in today’s critically examined audits, Bayesian statistics
provides a transparent and e�cient manner of auditing.

For convenience, we have demonstrated the five methods for constructing a
prior distribution using a beta distribution. However, the methods we have dis-
cussed are generic. When applied to a di↵erent situation (e.g., a gamma dis-
tribution), the specifics of the equations are di↵erent, but the incorporated prior
information remains the same. A comparison of the beta and gamma distributions
for MUS is beyond the scope of this chapter, and we refer to the work of Stewart
(2013, pp. 62–70) for further reading. However, we have included illustrations of
the discussed methods using a gamma distribution in Appendix 2.A.

When drawing inferences in the Bayesian framework, the auditor has to con-
sider that substantive test work, including sample sizes, can be reduced via a prior
distribution. If a prior is weakly informative, the potential reduction in sample
size is small. On the other hand, if a prior is very informative, the potential re-
duction in sample size is large. However, this large potential reduction in sample
size comes at a cost, as the auditor needs to show, firstly, that the existing infor-
mation is valid and relevant for the audit, and secondly that the translation of
this information into the prior distribution is appropriate. We have discussed the
tools to translate this existing information into the prior distribution.

However, in practice the existing information is often prone to measurement
error. To the extent that this measurement error exists, it is important that the
auditor takes the quality of the information into account when constructing a prior
distribution. It can be useful for the auditor to work together with a statistician
to determine if, and how, the existing information should be translated into a
probability distribution. As more complex information is incorporated into the
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analysis, the role of the statistician becomes increasingly important to assure that
the information is incorporated accurately into the prior distribution.

In our approach, the auditor constructs the prior distribution on the basis of
audit evidence (Methods 2–5), which means that there is information to justify the
prior distribution. In the case where this is not possible, the auditor is able to fall
back to the trivial prior distribution which reflects no existing information (Method
1). Because in both these scenarios it is transparent how the prior distribution is
constructed and what information it incorporates, it can be scrutinized by other
stakeholders, (internal and external) reviewers, or team members. For example,
transparency towards a regulator can be given in the scenario where the regulator
is trying to trace the steps of the auditor, or wants to scrutinize the auditor’s
judgment.

However, to mitigate critique that the auditor can reason to a foregone conclu-
sion based on the specific choice of prior distribution they can assess the robustness
of their outcomes to the choice of the prior distribution. This can be done via a
sensitivity analysis (Hoijtink et al., 2019; Liu and Aitkin, 2008), where the auditor
considers the amount of achieved assurance or estimated maximum misstatement
for di↵erent prior specifications. Sensitivity analyses have been proposed before
in auditing (Martel-Escobar et al., 2005), as well as in other scientific fields, to
see if evidence for a particular scenario is relatively stable across a range of prior
beliefs, suggesting that the statistical analysis yields conclusive results in multi-
ple scenarios. The auditor can assess this sensitivity to the prior distribution by
changing its parameters, or by changing the family of the prior distribution. For
example, the auditor can compare their informative Beta(↵, �) prior distribution
with the benchmark Beta(1, 1) prior distribution, or calculate the results using a
gamma prior distribution.

We are aware that, despite its broad use in the audit practice, strong argu-
ments against the use of the Audit Risk Model (ARM) as shown in method 3 have
been formulated. The main objection is that the constituents of the audit risk
influence each other, and should therefore not be treated as independent proba-
bilities (Cushing and Loebbecke, 1983; Jiambalvo and Waller, 1984; Kinney, 1983;
Leslie, 1984). Nonetheless, the ARM is widely used and accepted in practice. We
would like to highlight the fact that we do not attempt to criticize the validity
of the ARM. In fact, in Method 3 we build on the ARM by transforming assess-
ments of inherent risk and control risk into a prior distribution. We view it as a
successful model demonstrating a methodological approach to structuring audit
risk (Arzhenovskiy et al., 2019).

Finally, we have attempted to eliminate the di�culty of auditors determining
the proper distributional family, specifying the prior, conducting sensitivity anal-
yses, and documenting these choices, by implementing these methods in the R
package ‘jfa’ (Derks, 2022) and JASP for Audit (Derks et al., 2021b), a module
for the freely available and open-source statistical software program JASP (JASP
Team, 2022) that is designed to facilitate Bayesian statistical auditing. We hope
that, by implementing these methods in a digital environment for which no ex-
tensive programming knowledge is required, they can be of aid to researchers and
auditors interested in using Bayesian methods in audit sampling.
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2. Incorporating Audit Information into the Prior Distribution

2.A Illustrations using the gamma distribution

The Gamma(↵, �) distribution has a shape parameter ↵ and a rate (inverse scale)
parameter � that determine its shape. The gamma prior distribution is a common
choice for monetary unit sampling, in which a sample of n transactions containing a
total of k proportional errors (taints) is selected from a population of M monetary
units. The Gamma(↵, �) distribution is combined with the Poisson(� = kM

n | ✓)
likelihood to form a Gamma(↵ + k, � + 1

M/n ) posterior distribution. The most

likely error (mode) of the distribution, given ↵ � 1, is ↵�1

� .

2.A.1 Method 1: No explicit information

The posterior distribution resulting from a Gamma(1, 0) prior distribution de-
pends solely on the information in the sample since its posterior most likely error
is kM

n . This specific prior distribution is improper, however, meaning that gives
an infinite amount of probability mass to positive values of ✓.

2.A.2 Method 2: Information about the probability of

(in)tolerable misstatement

For the gamma distribution, the areas corresponding to tolerable and intolerable
misstatement, respectively, are given below.

P� =

Z ✓max

0

�↵

�(↵)
✓↵�1e��✓d✓ P+ =

Z M

✓max

�↵

�(↵)
✓↵�1e��✓d✓. (2.A.1)

Given an assessment of the probability of tolerable misstatement P+ = 1�P�

and planning for zero expected deviations (↵ = 1), the � parameter of the gamma

prior distribution can be determined as � = �
ln(P+)

✓max
. The prior distribution is

therefore a Gamma(1, � ln(P+)

✓max
) distribution.

2.A.3 Method 3: Information from earlier samples

Considering the reduction in required sample size �n = n+�n�, the � parameter
of the gamma distribution can be set to � = 1

M/�n . The prior distribution is

therefore a Gamma(1, 1

M/�n ) distribution.

2.A.4 Method 4: Information from last year’s audit

Suppose the auditor has access to last year’s posterior Gamma(↵t�1, �t�1) distri-
bution, which has its 95 percent upper bound below the performance materiality.
Given a value for f , the prior distribution is a Gamma(1+(↵t�1�1)⇥f , �t�1⇥f)
distribution.
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2.B R code to reproduce method 5

## For this method it is required that "rstan" is installed
## Use install.packages("rstan") to install the package in R
## For more information about installation of the "rstan" package,
## see https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

# Generate the benchmark data
S <- 298112312 # Sales of auditee
C <- 223994405 # Cost of sales of auditee

n <- 100 # Number of data points
minSales <- 1e8
maxSales <- 4e8
ratio <- 0.74
noise <- 1.15e7

set.seed(123)
benchmark <- data.frame("sales" = runif(n, min = minSales, max = maxSales))
benchmark[["costofsales"]] <- ratio * benchmark$sales +

noise * rnorm(n, mean = 0, sd = 1)

# Create a figure of the benchmark data
xBreaks <- pretty(c(1e8, 4e8), min.n = 4)
yBreaks <- pretty(c(1e8, 4e8), min.n = 4)

# Estimate a linear regression model using the benchmark data
benchmarkRegression <- lm(costofsales ⇠ sales, data = benchmark)

# Derive the prediction for the auditee’s cost of sales
predictedC <- predict(benchmarkRegression,

newdata = data.frame(sales = S),
interval = "prediction", level = 0.90)

# Derive the relative deviation of the auditee’s booked costs of sales
# when compared to the predicted cost of sales
mu <- (C - predictedC[1]) / C

# Derive the standard deviation of the distribution of the residuals
stdev <- sd(benchmarkRegression$residuals) / C

# Load the rstan library
library(rstan)

# Compile the stan model
model <- "
data {

int<lower=0> n; //# Number of items in sample
int<lower=0> k; //# Number of misstatements in sample
real mu; //# Mean of the prior distribution
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real sigma; //# Standard deviation of the prior distribution
}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ⇠ normal(mu, sigma)T[0, 1];
k ⇠ binomial(n, theta);

}
"
stanModel <- stan_model(model_code = model)

# The required sample size is the minimum integer n that brings the
# 95th percentile of the posterior distribution,
# given that zero errors are found in the sample, below the performance
# materiality (5 percent).

n <- 50 # Required sample size
k <- 0

# Perform sampling
stanFit <- sampling(stanModel,

data = list(n = n, k = k, mu = mu, sigma = stdev),
iter = 40000, warmup = 5000,
chains = 1, cores = 1)

# Extract samples for theta
samples <- extract(stanFit)
theta <- samples[["theta"]]

# Extract the 95th percentile of the posterior distribution for theta
quantile(theta, probs = 0.95) # 0.04958

# By changing the code "n <- 50" into "n <- 49" and running the code below
# it again you can see the results for n = 49.
# For n = 49, the upper bound equals 5.01 percent and so this sample
# size is not sufficient.
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Chapter 3

Incorporating Audit Information into

the Statistical Model

Abstract

The audit environment of today o↵ers a wealth of information in the
form of data. Consequently, data about the auditee is expected to guide
and improve auditors’ approach to tests of details. However, to be able
to make optimal use of this data, auditors must have tools that facilitate
the e↵ective and e�cient use of quantitative information throughout an au-
dit. In this chapter, we introduce Bayesian generalized linear modeling as
a statistical framework to incorporate this information into tests of details,
thereby enabling auditors to deliver a fine-grained and specifically tailored
audit opinion to stakeholders. We begin with an introduction of Bayesian
inference in audit sampling, then explain the main concepts underpinning
Bayesian generalized linear modeling and show how this approach allows au-
ditors to bridge the gap between analytics on integrally available data and
analytics on data that is available on a sample basis, making optimal use of
their information.

Keywords: Analytical procedures, audit sampling, Bayesian, statistical model,
stratification.

3.1 Introduction

Today’s auditors stand at a precipice. The impact of the data revolution (Kitchin,
2014) is gradually permeating audit theory and practice, and as a result, most au-
ditors have some understanding of the possibilities of using (big) data analytics

Parts of this chapter are published (in dutch) as Derks, K, de Swart, J. & Wetzels, R.
(2022). Een Bayesiaanse blik op gestratificeerde steekproeven heeft voordelen voor de auditor.
Maandblad voor Accountancy en Bedrijfseconomie, 96 (1/2), 37–46. https://doi.org/10.5117/
mab.96.78836 and under review for publication as Derks, K., de Swart, J., Wagenmakers, E.–
J., & Wetzels, R. (2022). How to Incorporate Audit Information into the Statistical Model:
Bayesian Generalized Linear Modeling for Audit Sampling.
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in their audit activities. While methods of data analysis are slowly being adopted
in audit practice (Gepp et al., 2018), the heightened interest in these methods
bears the anticipation that they will increase auditors’ knowledge of the auditee
and, consequently, improve their ability to collect su�cient and appropriate audit
evidence (Yoon et al., 2015). For this reason, audit researchers (e.g., Cao et al.,
2015), audit firms (e.g., Deloitte, 2021), and audit standard setters (e.g., Public
Company Accounting Oversight Board (PCAOB), 2017; Koninklijke Nederlandse
Beroepsorganisatie van Accountants (NBA), 2017) have expressed a desire to use
methods of data analysis as a means to guide and inform tests of details. However,
to do so optimally, auditors must have tools that allow them to use quantitative
information throughout an audit. Here, we introduce Bayesian generalized linear
modeling as a statistical framework for incorporating such information into tests
of details. The aim of this chapter is to demonstrate how this framework can
help auditors align their sample evaluation with the situation in practice and, as
a result, provide an audit opinion that is specifically tailored to the audit and
the auditee. Because, to the best of our knowledge, Bayesian generalized linear
modeling has not been addressed in the auditing literature before, the main con-
tribution of this chapter is to describe how it can be used in an audit environment
and what the main benefits are for auditors in practice.

While much research discusses how analytical procedures can be applied to
obtain audit information (Brown-Liburd et al., 2015; Yoon et al., 2015), an under-
represented area of research is the integration of this information into later stages
of the audit (e.g., tests of details). Certainly, advances in data analytics now al-
low auditors to inspect some populations completely without the need for tests of
details (Appelbaum et al., 2017; Huang et al., 2022). However, if the should-be
position (“soll”) to compare the data to be audited (“ist”) against cannot easily
be made integrally available in electronic form, tests of details remain the primary
method of obtaining reasonable assurance about the misstatement of a population.
For example, the auditor can use an analytical procedure to cross-check payments
for consistency with payment orders, but then subsequently also needs to verify
the validity of the payment orders using tests of details. Another example is a
situation where the auditor must form an opinion on a large number of items that
are not digitally recorded. For such populations that require much audit e↵ort,
analytical procedures will not entirely replace but instead inform tests of details
(Cockcroft and Russell, 2018; Yoon and Pearce, 2021).

A classic example is when an auditor performs an analytical procedure to deter-
mine the risk of material misstatement for a population as “low” (Blokdijk, 2004).
Auditing standards prescribe that this pre-existing information be incorporated
into the auditor’s statistical approach to tests of details, commonly referred to as
audit sampling, to reduce the amount of work that needs to be performed (ISA
530, International Auditing and Assurance Standards Board (IAASB), 2018).
The aim is to ensure that the information is used to its full potential. Pre-existing
audit information can be integrated into audit sampling in one of two ways: qual-
itatively or quantitatively. In a qualitative approach, the pre-existing information
enters into the statistical analysis via the audit risk (Stewart, 2012). For example,
the aforementioned risk assessment enables the auditor to reduce the required au-
dit risk for the population, which consequently leads to less audit work that needs
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to be performed to reduce this risk to an acceptably low level. Unfortunately,
this approach is rigid because it does not allow auditors to di↵erentiate between
auditees based on information other than audit risk. In practice, there may be
additional information that cannot be captured by adjusting this risk, resulting in
some information being discarded in this approach. Consequently, the qualitative
approach results in a suboptimal way of integrating the result of analytical pro-
cedures with that of tests of details. In a quantitative approach, all information
(including integrally available data) enters the statistical analysis through the sta-
tistical model. This approach is more flexible than a qualitative approach because
it enables auditors to develop a statistical model that aligns with the situation in
practice. Since all available data is integrated into one estimate of the population
misstatement, the quantitative approach exploits all data to its full potential.

By incorporating pre-existing audit information into the statistical model, au-
ditors can provide an opinion that is tailored to the audit and the auditee. This
comes with two practical benefits. First, it improves their ability to form an
opinion about the financial statement misstatement because they can statistically
explain the impact of the incorporated information on the misstatement. This
enables auditors to explain to stakeholders in a transparent manner what char-
acterizes misstatements in the population. Having such information enables the
identification of problems at the highest possible organizational level (de Swart
et al., 2013), as well as providing management with relevant insight into potential
improvements. Suppose an auditor obtained information on the aging of open
invoices. If the auditor discovers that the booking delay on an open invoice partly
predicts whether the invoice is misstated, the auditor can relay this information
to the auditee, who can then act on it. Both parties benefit from this increase in
knowledge. Second, incorporating audit information into the statistical model for
audit sampling improves auditors’ ability to detect misstatements because they
can more precisely determine which invoices in the population are likely to be
misstated. As more data is used to di↵erentiate the invoices, more fine-grained
decisions about (parts of) the population can be made. For example, incorporat-
ing the booking delay into the statistical model allows the auditor to statistically
di↵erentiate between invoices in the population. They can then focus their remain-
ing audit e↵orts on invoices that are most likely to be misstated. Despite these
two considerable advantages, the quantitative approach is not commonly used in
auditing practice. This is because incorporating information into the statistical
model can be di�cult and time-consuming to justify. Consequently, statistical au-
dit software such as ACL (Dilligent, 2022) and IDEA (CaseWare Analytics, 2022)
mainly focuses on a statistical model that estimates the misstatement in a popu-
lation based on the number of misstatements encountered in a sample alone. To
overcome the hurdles of incorporating more information when drawing quantita-
tive conclusions about the misstatement in a population, we will walk through the
steps and considerations involved in developing more complex statistical models.

In this chapter, we discuss statistical models in the context of Bayesian statis-
tics. The Bayesian statistical framework, as an alternative to the currently domi-
nant frequentist statistical framework (Stewart, 2012), can have considerable ad-
vantages for auditors (van Batenburg et al., 1994; Steele, 1992; Stewart, 2013).
For example, Bayesian statistics allows for the inclusion of pre-existing informa-

43



3. Incorporating Audit Information into the Statistical Model

tion about the misstatement in the sample evaluation (Derks et al., 2021a), and it
facilitates the continuous monitoring of evidence over time (Rouder, 2014; Wagen-
makers et al., 2008). Furthermore, the Bayesian approach is advocated as a good
fit for auditing practice because it is relatively simple to understand for auditors
and stakeholders of the audit (Stewart, 2013; Derks et al., 2022a).

This chapter is structured as follows. Section 3.2 provides a brief overview
of the building blocks of Bayesian inference in the context of audit sampling.
Next, Section 3.3 introduces the reader to the fundamental concepts underpinning
Bayesian generalized linear modeling. Using a practical example, we demonstrate
how this approach enables auditors to incorporate multiple sources of informa-
tion into the statistical model. The following section discusses the sensitivity and
robustness of the proposed models to the prior distribution. Section 3.5 delves
deeper into two practical cases to demonstrate the advantages of Bayesian gen-
eralized linear modeling over a more traditional approach. Section 3.6 contains
guidelines and suggestions for putting this technique into practice. In the final
part, we provide our concluding comments.

3.2 The Bayesian approach to audit sampling

When evaluating an audit sample, the goal of the auditor is to make a statement
about a particular characteristic, ✓, of a population of items. Generally, in a
financial audit ✓ represents the probability of misstatement, that is, the probability
that an item or a monetary unit (e.g., a dollar) from the population is misstated.
Since the auditor does not inspect the entire population but only the data coming
from a sample of this population, y, the information from the sample has to be
extrapolated to the entire population. Hence, the auditor ought to acknowledge
uncertainty and make a probabilistic statement about ✓.

The Bayesian way of making a probabilistic statement about the parameter
✓, given the data y, is through the posterior distribution p(✓ | y). The posterior
distribution is defined by Bayes’ theorem as proportional to the product of two
distributions, the prior distribution p(✓) and the likelihood function l(y | ✓), given
the sample data y:

p(✓ | y)| {z }
Posterior

/ l(y | ✓)| {z }
Likelihood

⇥ p(✓)|{z}
Prior

. (3.2.1)

The symbol / indicates that the expression to the right of this sign is equal to
the probability distribution to the left of this sign except for scaling. As Equa-
tion 3.2.1 illustrates, a Bayesian model has three fundamental components: the
prior distribution, the likelihood, and the posterior distribution. In the following
subsections, we will briefly discuss these three components of a Bayesian model.

3.2.1 The prior distribution

The prior distribution p(✓) reflects the auditor’s pre-existing information about the
probability of misstatement before any information from the sample has been seen.
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The prior distribution is a probability distribution, which means that an adequate
prior distribution assigns a relative plausibility to each possible value of ✓ such
that the sum of the probabilities of every possible value of ✓ equals one. Note that
because the prior distribution contains the auditor’s pre-existing information, it
should also be substantiated as such. For example, because the aforementioned
risk assessments provide information about the probability of misstatement in the
population, they can be incorporated as information into the prior distribution
(Derks et al., 2021a, pp. 628–629).

A commonly used prior distribution is a uniform Beta(1, 1) distribution for ✓
(Figure 3.1, dashed line), implying that every value of the population misstatement
is equally likely a priori. There are two reasons why this uniform prior distribution
is often used in practice. First, it is easy to understand; second, with this prior, the
Bayesian approach produces nearly identical results as a frequentist audit sampling
procedure (Derks et al., 2021a). Therefore, we will use the Beta(1, 1) distribution
as a prior for ✓ in the remainder of this section. However, it is important to
note that this prior distribution lacks explicit information about the population
misstatement (Derks et al., 2021a, pp. 626–627).
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Figure 3.1: Illustration of the Beta(1, 1) prior distribution and corresponding
Beta(4, 18) posterior distribution for after seeing a sample of n = 20 items con-
taining k = 3 misstatements. The posterior mode and 95 percent highest density
interval are provided on top. Since the Beta(1, 1) prior is uniformly distributed,
the posterior distribution also equals the likelihood function.
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3.2.2 The likelihood

The likelihood represents the information that the observed sample data y contains
about the population misstatement ✓. The likelihood function l(y | ✓) quantifies
the probability that the sample outcomes will occur under specific values of ✓ (Etz,
2018). Hence, the role of the likelihood function is to describe the support in the
data for the possible values of the parameter ✓.

In audit sampling, the probability of observing k misstatements in a sample of
n items, with an underlying parameter ✓, is binomially distributed and is typically
denoted as Binomial(k |n, ✓) (Stewart, 2012). Suppose the auditor has inspected
a sample of n = 20 items and discovered that k = 3 items contain a misstate-
ment. Assuming the binomial likelihood implies that the data from this sample is
distributed as Binomial(k = 3 |n = 20, ✓), see Figure 3.1. The value of ✓ that max-
imizes the likelihood function is called the maximum likelihood estimate (Myung,
2003), which in this example is equal to 3

20
= 0.15.

In a frequentist audit sampling procedure, the likelihood function is the sole
source of information for the auditor’s inferences about ✓ in the population. In a
Bayesian audit sampling procedure, the information in the likelihood function is
combined with the information in the prior distribution to form the posterior distri-
bution. As we will demonstrate in this chapter, the likelihood also accommodates
incorporating more information than just the observed number of misstatements
in the sample.

3.2.3 The posterior distribution

Using Bayes’ theorem, the auditor can combine the information in the prior dis-
tribution with the information in the likelihood to form the posterior distribution.
Hence, the posterior distribution p(✓ | y) contains the auditor’s updated knowl-
edge about the probability of misstatement ✓ after observing the sample data y.
Conceptually, Bayes’ theorem states that values of ✓ that predict the sample data
relatively well become more likely than they were under the prior distribution,
while values of ✓ that predict the sample outcomes relatively poorly become less
likely. Since the posterior distribution follows from the prior distribution and the
likelihood, it is the sole component in the model that cannot be modified by the
auditor. Nonetheless, the posterior distribution of ✓ is the main source of infor-
mation for a Bayesian auditor because it contains all the information the auditor
had prior to sampling and all the information obtained from the sample.

Because the posterior distribution, like the prior distribution, is a probability
distribution, the updated knowledge about the population misstatement ✓ can be
summarized by statistics such as the mean, median, and mode of the posterior
distribution. For example, the auditor can make a statement about the most
likely misstatement in the population by determining the mode of the posterior
distribution (i.e., the value of with the highest probability). Similarly, percentiles
of the posterior distribution can be interpreted in terms of credibility (Kruschke
and Liddell, 2018). For example, the 95 percent highest posterior density (HPD;
Kruschke, 2015, pp. 87–89) interval contains the 95 percent most likely values of
✓ under the posterior distribution.
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The posterior distribution using a Beta(1, 1) prior after seeing the binomially
distributed sample of n = 20 items containing k = 3 misstatements is a Beta(1 +
k = 4, 1 + n � k = 18) distribution (Figure 3.1, solid line). The mode of this
posterior distribution is k

n = 0.15 (Myung, 2003), which means that the most
likely probability of misstatement in the population is estimated to be 15 percent.
The 95 percent HPD interval for the posterior distribution is [0.041; 0.340]. This
means that, with a 95 percent probability, the probability of misstatement in the
population is estimated to be between 4.1 percent and 34 percent.

To summarize, the Bayesian approach to audit sampling entails specifying a
prior distribution for the probability of misstatement, updating the prior distri-
bution with information provided by the sample data using Bayes’ theorem, and
using the posterior distribution to perform inference about the misstatement in
the population. One considerable advantage of the Bayesian approach over the
frequentist approach is that it allows the auditor to incorporate pre-existing infor-
mation about the probability of misstatement into the statistical analysis via the
prior distribution. However, the Bayesian approach to audit sampling discussed
in this section is limited because inferences about ✓ are based on a single char-
acteristic of the sample data, that is, whether an item is misstated or not. The
following section introduces Bayesian generalized linear modeling as a method for
incorporating multiple source of data into the auditor’s approach to audit sam-
pling.

3.3 Bayesian generalized linear modeling

This section explains how Bayesian generalized linear modeling (Dey et al., 2000;
Gelman et al., 2013, Chapter 16) can be applied in the context of audit sampling.
In contrast to the basic approach described in the preceding section, in which
inferences about the population are based on a single characteristic of the sample
data, a Bayesian generalized linear model can be applied if the auditor wants to
use multiple sources of information to estimate the probability of misstatement.
Assume an auditor has obtained data concerning the control e↵ectiveness that
applies to an item or the booking delay of an item. This data is typically ignored
during the sample evaluation. However, the auditor has the option to make use of
this data by expanding the statistical model with additional parameters. By doing
so, the auditor can tailor their statistical model and sample evaluation to the audit
and the auditee, resulting in a more fine-grained opinion. Expanding the model
has the additional advantage that pre-existing information about the impact of
the incorporated data on the probability of misstatement can be integrated into
the prior distribution for the new parameters. There is, of course, a trade-o↵:
While a Bayesian generalized linear model enables auditors to incorporate many
types of integrally available data into the statistical model, it is also more di�cult
to set up. At the same time, even if the added information does not increase the
accuracy of the estimate of misstatement, it does not hurt too much since the cost
of retrieving extra data is getting lower and the output of the statistical model will
reveal when data has been incorporated in vain. To aid the e↵ective application
of this approach in auditing practice, we describe how to construct and evaluate
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a Bayesian generalized linear model for audit sampling step by step.
Consider the common scenario in which an auditor is tasked with obtaining

reasonable assurance about a population of items representing accounts receivable
not being materially misstated. To illustrate this example, consider the fictitious
data set in Table 3.1, which containsN = 3000 items originating at S = 3 branches
of the auditee. Assume that, prior to tests of details, the auditor performed
an analytical procedure to obtain data about the population. In this instance,
the auditor used data mining on logging data to determine how long it took (in
minutes) for each item in the population to be approved by an administrator after
logging in. The auditor wants to use this time spent on controls as a proxy for
control e↵ectiveness. Hence, for each item i in the population, two characteristics
are known: the control intensity of the item (denoted xi in Table 3.1) and the
branch of the auditee from which the item originated (denoted si). Assume that
the auditor has taken a sample of n = 20 random items from the population and
discovered that k = 3 items contain a misstatement (column ki in Table 3.1).
For simplicity, assume that both the control intensity and the number of items
per branch in the table are representative of those in the population. The auditor
wants to estimate the probability of misstatement in the population using the data
from this sample.

An intuitive and e�cient way for the auditor to estimate the probability of
misstatement in the population is to divide the number of misstatements (3) by
the number of items in the sample (20) to arrive at the proportion of misstatement
in the sample. In the absence of any additional information about the items in
the population, the sample proportion of 3

20
= 0.15 is the auditor’s most logical

guess of the probability of misstatement in the population. Now, suppose that the
auditor is not only interested in estimating the probability of misstatement in the
population but also in estimating the probability of misstatement for each item
that was not included in their sample. Then, for each of these items, the sample
proportion of 0.15 is also the auditor’s most logical estimate of the probability of
misstatement. Although intuitive, this approach is not ideal because it does not
explicitly state how the misstatements in the sample (i.e., the data) are related to
the probability of misstatement in the population (i.e., the parameter). This means
that the auditor cannot quantify the uncertainty associated with their estimates.
To quantify this uncertainty, the auditor must explicitly state their approach to
estimation by means of a statistical model.

3.3.1 The basic statistical model for audit sampling

A statistical model defines a functional relationship f(k | ✓) between data k and
a parameter ✓. For instance, the data k can represent measurements of the mis-
statement in a sample of items, while the parameter ✓ represents the probability of
misstatement in the population. In audit sampling, the relationship f is typically
assumed to be a Bernoulli distribution that accounts for the uncertainty due to
only measuring a small sample of a larger population (Gelman and Hill, 2007).
To make this concrete, the statistical model ki ⇠ Bernoulli(✓), where the symbol
⇠ means “is a stochastic variable distributed as”, captures the auditor’s intuitive
approach (described in the preceding paragraph) to estimating the probability of
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Table 3.1: Fictitious data set containing a population of N = 3000 items from
which a random sample of n = 20 items containing k = 3 misstatements has been
inspected. The left-hand columns display the item index (i), control intensity (xi),
branch index (si), and misstatement outcome (ki). The remaining columns display
the estimated probability of misstatement for each item, ✓i, (with 95 percent HPD
interval in brackets) based on six models. For clarity, the estimates for the in-
sample items are omitted, but they are used to calculate the population estimate
(bottom row).

Estimated ✓i

i xi si ki
No covariate
No di↵erences

No covariate
No similarities

No covariate
Multilevel

With covariate
No di↵erences

With covariate
No similarities

With covariate
Multilevel

1 0 1 1
2 0 1 1
3 0 1 - 0.150 [0.041; 0.340] 0.333 [0.081; 0.685] 0.156 [0.029; 0.505] 0.207 [0.046; 0.514] 0.436 [0.116; 0.827] 0.230 [0.046; 0.659]
4 0 2 1
5 0 2 0
6 1 1 0
7 1 2 0
8 1 3 0
9 1 3 0
10 1 3 0
11 2 1 0
12 2 2 0
13 2 3 0
14 3 2 0
15 3 2 0
16 3 3 0
17 3 3 0
18 4 1 0
19 4 1 - 0.150 [0.041; 0.340] 0.333 [0.081; 0.685] 0.156 [0.029; 0.505] 0.060 [0.008; 0.272] 0.198 [0.025; 0.615] 0.066 [0.007; 0.401]
20 4 1 0
21 4 2 0
22 4 2 - 0.150 [0.041; 0.340] 0.143 [0.011; 0.476] 0.127 [0.011; 0.368] 0.060 [0.008; 0.272] 0.063 [0.003; 0.411] 0.050 [0.001; 0.294]
23 4 3 - 0.150 [0.041; 0.340] 0.000 [0.000; 0.312] 0.086 [0.000; 0.308] 0.060 [0.008; 0.272] 0.014 [0.000; 0.260] 0.025 [0.000; 0.243]
24 5 2 - 0.150 [0.041; 0.340] 0.143 [0.011; 0.476] 0.127 [0.011; 0.368] 0.038 [0.003; 0.268] 0.042 [0.001; 0.409] 0.028 [0.000; 0.287]
25 5 2 - 0.150 [0.041; 0.340] 0.143 [0.011; 0.476] 0.127 [0.011; 0.368] 0.038 [0.003; 0.268] 0.042 [0.001; 0.409] 0.028 [0.000; 0.287]
26 5 2 - 0.150 [0.041; 0.340] 0.143 [0.011; 0.476] 0.127 [0.011; 0.368] 0.038 [0.003; 0.268] 0.042 [0.001; 0.409] 0.028 [0.000; 0.287]
27 5 3 - 0.150 [0.041; 0.340] 0.000 [0.000; 0.312] 0.086 [0.000; 0.308] 0.038 [0.003; 0.268] 0.011 [0.000; 0.247] 0.016 [0.000; 0.234]
28 5 3 - 0.150 [0.041; 0.340] 0.000 [0.000; 0.312] 0.086 [0.000; 0.308] 0.038 [0.003; 0.268] 0.011 [0.000; 0.247] 0.016 [0.000; 0.234]
29 5 3 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3000 5 3 - 0.150 [0.041; 0.340] 0.000 [0.000; 0.312] 0.086 [0.000; 0.308] 0.038 [0.003; 0.268] 0.011 [0.000; 0.247] 0.016 [0.000; 0.234]
Pop 0.150 [0.041; 0.340] 0.221 [0.084; 0.366] 0.149 [0.040; 0.331] 0.142 [0.035; 0.311] 0.197 [0.086; 0.351] 0.138 [0.037; 0.302]

Note. The number 1 in the column ki implies that the item is misstated. The
number 0 implies that the item does not contain a misstatement. The ‘-’ sign
implies that an item was not included in the sample.

misstatement in the population. Note that, because the aggregated data of n
independent Bernoulli(✓) distributed observations form a Binomial(k |n, ✓) distri-
bution, this approach is equal to that described in Section 3.2, with the exception
that the data in Section 3.2 are aggregated before being analyzed. In Section 3.5,
we will discuss examples of statistical models formulated at a higher level than
the item level i.

This basic statistical model explains the data k with a single parameter ✓,
which can be interpreted as the probability of misstatement in the population.
In other words, this model assumes that the misstatement ki in each item i is a
function of the probability of misstatement in the population. It is worth noting
that this basic model is widely used in auditing (American Institute of Certi-
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fied Public Accountants (AICPA), 2019; Stewart, 2012). However, a more flex-
ible way to specify this model is to reformulate the problem of estimating ✓ in
terms of log-odds via a transformed parameter ⇠ = ln( ✓

1�✓ ) = logit(✓), as follows:

ki ⇠ Bernoulli(logit�1(⇠)). Following the conventions for graphical representa-
tions of statistical models used in Lee and Wagenmakers (2013, p. 18), we have
depicted this basic statistical model in Figure 3.2. This transformation of the
model parameters is the key idea behind a generalized linear model. We refer to
Appendix 3.A for a more detailed discussion of the log-odds transformation, but
we want to emphasize that this model is equivalent to the previous model, with the
exception that it can be expanded more easily at a later point. For explanatory
purposes, the R (R Core Team, 2022) code for fitting this model and the other
models in this chapter to the data in Table 3.1 can be found in Appendix 3.B.

i = 1,...,n items

  

Figure 3.2: Graphical representation of the basic statistical model to estimate the
probability of misstatement ✓ in a population. The single white circle represents
an unobserved continuous parameter in the model and the gray square represents
observed discrete data. The double white circle represents ✓, which is deterministi-
cally determined (unobserved and continuous) once ⇠ is known. Since the observed
misstatements depend on the parameter ✓, the arrow is directed towards k.

After specifying a uniform prior distribution transformed to the log-odds scale
(i.e., if the prior on ✓ is Uniform(0, 1), a Logistic(0, 1) prior on ⇠ = ln( ✓

1�✓ )
is induced (Lin and Hu, 2008, p. 1148)) and collecting data, the auditor can
compute the posterior distribution for ✓ = logit�1(⇠). This allows the auditor to
do two things. First, they can make statistical inferences about the probability of
misstatement in the population. For instance, the auditor can determine the most
likely value of the posterior distribution of ✓ and quantify the uncertainty about
✓ using the HPD interval. To put this into context, the most likely probability of
misstatement in the population is 15 percent (see the bottom row of Table 3.1).
The 95 percent HPD interval around this estimate ranges from 4.1 percent to 34
percent. Second, given the posterior distribution of ✓, the auditor can estimate
the probability of misstatement for each unseen item in the population, ✓i, based
on the characteristics of that item. To illustrate, the estimated probability of
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misstatement for each unseen item in the population is shown in the fifth column of
Table 3.1. Item 3, for instance, is estimated to have a probability of misstatement
of 15 percent, with a 95 percent HPD lower bound of 4.1 percent and an upper
bound of 34 percent.

Every statistical model is a simplification of reality. Consequently, the output
of a statistical model is predicated on the assumption that the model accurately
describes the situation in practice. In other words, the auditor’s choice of sta-
tistical model will shape their conclusions. To demonstrate this, we revisit the
estimates of the basic model in Table 3.1. Because this model assumes a single
parameter that explains the misstatement of all items in the population, it does
not distinguish between specific items in the population, and thus the estimated
probability of misstatement is the same across all items. To make this concrete,
all items in the population have an estimated probability of misstatement of 15
percent, with a 95 percent HPD lower bound of 4.1 percent and an upper bound
of 34 percent. Such output forces the auditor to conclude that all items in the
population have the same probability of being misstated, even though the items
may vastly di↵er in their vulnerability to misstatement.

With this in mind, the basic statistical model accurately describes the situ-
ation in practice under one condition: The auditor’s only source of data is the
misstatement in the sample items. However, if multiple sources of data about
the (probability of) misstatement are available, this model is less appropriate and
even restrictive. In our running example, for instance, it is possible that items
that are quickly approved by an administrator are more likely to contain a mis-
statement than items that took a longer time to approve, or that items from a
specific branch are more likely to be misstated than items from other branches.
In this case, the statistical model should ideally take the additional information
into account to better align with the situation in practice. In other words, because
the statistical model shapes the auditor’s conclusions, it is in their best interest to
incorporate relevant information in the form of data—–also known as covariates–
—into the statistical model. By including the logit transformation in the model,
the covariates can be added and processed in a statistically sound way.

3.3.2 Incorporating covariates into the statistical model

Covariates are additional data that the auditor believes contains information about
the (probability of) misstatement in the items. Typically, this data can be contin-
uous (e.g., the length of the time period an invoice is outstanding) or categorical
(e.g., the branch of the auditee from which an item originates, or a risk category
assigned to an item). In the following subsections, we will cover how to incor-
porate continuous and categorical covariates into the statistical model for audit
sampling.

3.3.2.1 Incorporating continuous covariates into the statistical model

In this subsection, we demonstrate how continuous covariates can be incorporated
into the statistical model for audit sampling. Continuous covariates are data that
can take on any numerical value. In an audit context, this could be the number of
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days a payment was (or is) outstanding, the total sales revenue per branch of the
auditee, or the number of FTEs who can modify a payment through the internal
system. In our running example, the auditor used data mining to perform an
analytical procedure to determine the control intensity that applies to each item.
Suppose that the auditor discovers that some items in the population are subject
to higher control intensity than others, for example, because items that adminis-
trators are less familiar with are checked more thoroughly. The statistical model
can express the relationship between the misstatements, the control intensity xi

and the probability of misstatement.
To incorporate the control intensity as a covariate in the statistical model, a

new model term that quantifies the relationship between the misstatement and
the control intensity is added. In practice, this means that the basic model is
expanded with an additional parameter �x and the new data xi as follows: ki ⇠
Bernoulli(logit�1(�0+�x ·xi)), see Figure 3.3. In other words, the expanded model
assumes that the misstatement ki of each item i is a function of the probability
of misstatement in the population and the control intensity xi of that item. Note
that, because this is a Bayesian analysis, all parameters that are to be estimated
must have a prior distribution, which we will cover in Section 3.4.

i = 1,...,n items

Figure 3.3: Graphical representation of a statistical model to estimate the proba-
bility of misstatement ✓ in a population while taking the control intensity x into
account. The gray circle represents observed continuous data.

When the control intensity is fed into the statistical model as an input, the
parameter �0 represents the log-odds of the probability of misstatement in the
population for items with zero control intensity. It should be noted that items
with zero control intensity may not exist in the data, which means that the in-
terpretation of �0 is potentially meaningless. For this reason, it is recommended
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to standardize continuous covariates in the model. We follow the conventions
for standardization and transform the covariates to have a mean of zero and a
standard deviation of 1

2
(for a motivation of this choice, see Gelman (2008)). By

standardizing the covariates, the parameter �0 represents the log-odds of misstate-
ment in the population for items with an average control intensity, providing a
more meaningful interpretation than before the covariates were standardized.

Next, the parameter �x can be interpreted as the deviation from �0 as a func-
tion of the standardized control intensity. For example, if �x = �1.2, an increase
by one in the standardized control intensity is associated with a multiplication of
the log-odds of misstatement by �1.2 and, equivalently, with a multiplication of
the odds of misstatement by e�1.2 = 0.30. In other words, if �x is negative, the
probability of misstatement is higher for items with low control intensity than for
items with high control intensity, and vice versa. While not the main focus of
this chapter, it is worth noting that the statistical model is not limited to a sin-
gle � parameter and can be expanded if more continuous covariates are available
(Gelman and Hill, 2007, pp. 32—34).

In comparison to the basic model, the auditor gains two benefits by including
the control intensity as a covariate. First, the auditor can explain the impact of
this integrated information on the misstatement in a statistical manner because
the expanded model statistically estimates the relationship between the control in-
tensity and the probability of misstatement. This, in turn, can provide the auditee
with useful information. For example, if the auditor has convincing evidence that
the probability of misstatement is high for items with low control intensity, this
information can be communicated to the auditee, who can then, for example, im-
prove internal control by increasing the minimal control intensity. Second, unlike
the basic statistical model, which assumes that the probability of misstatement is
the same across all items in the population, this statistical model allows the au-
ditor to estimate the probability of misstatement of an item based on the control
intensity of that item. To illustrate, the estimated probability of misstatement
for the unseen items in the population under the expanded model is shown in the
eight column of Table 3.1. Because this model includes information to di↵erentiate
items in the population based on control intensity, the estimated probability of
misstatement for each item varies depending on the control intensity of that item.
For example, item 3 has zero minutes between login and approval and thus has a
relatively high estimated probability of misstatement when compared to item 19,
which has four minutes between login and approval and thus has a relatively low
estimated probability of misstatement. Because auditors can make this distinc-
tion, they can more precisely identify potential misstatements in the population
and, as a result, make finer-grained decisions about (parts of) the population.
Even in the case that the control intensity does not influence the probability of
misstatement, the output of the statistical will inform the auditor accordingly.

3.3.2.2 Incorporating categorical covariates into the statistical model

In this subsection, we will look at how to incorporate categorical covariates into the
statistical model for audit sampling. Categorical covariates are data whose value
can take on one of a limited number of possible values, classifying each item in
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the population as belonging to one of several unordered groups. In audit practice,
parts of the population having the same value for the categorical covariate are
typically referred to as strata (Roberts, 1978, p. 95). For instance, in our running
example, the auditor has divided the population into three distinct strata based on
the origin of each item across the branches of the auditee. In this case, the branch
from which an item originates can be viewed as a type of stratum membership.

The data from the branches, like the data from continuous covariates, can be
included in the statistical model by introducing a new model term that quantifies
the relationship between the misstatements and the stratum membership. The
form of this new model term is determined by the auditor’s assumptions about
how di↵erent or similar the probability of misstatement is in each branch. This
can be thought of as a spectrum: On one end, the misstatement in the branches
could be identical, while on the other end, the misstatement in the branches could
be completely unrelated. To best align the new model term with the situation in
practice, the auditor must decide where to place their model on this spectrum.
In the following sections, we will first look at what the two extreme ends of this
spectrum imply for the statistical model. Following that, we demonstrate how to
strike a more realistic balance between these two extremes.

3.3.2.2.1 Incorporating no di↵erences between strata

First, assume the auditor has information indicating that the probability of mis-
statement is likely to be equal across all branches of the auditee. For example,
they are aware that all branches of the auditee use the same formula, internal sys-
tems, and have rotating sta↵. Then, a statistical model in which misstatements
are not dependent on the originating branch might be used to describe the situ-
ation in practice. The fundamental assumption of such a model is that there are
no di↵erences between the misstatements in the branches.

The auditor can explicitly state this assumption in the statistical model by
including a single �0 parameter that represents the overall probability of misstate-
ment in the population: ki,s ⇠ Bernoulli(logit�1(�0 + �x · xi,s)), see Figure 3.4.
Conceptually, this means that the samples from all branches are interchangeable;
in other words, the distinction between branches is unnecessary. As a result, the
samples can be aggregated across branches and analyzed as a whole. This model
is identical to the previous model, except for the addition of the subscript s, which
indicates from which branch item i originates.

As previously stated, if the auditor has information indicating that the proba-
bility of misstatement is equal across branches of the auditee, this statistical model
might be used to describe the situation in practice. However, the assumption un-
derlying this model is at the extreme end of the spectrum, and the statistical
results reflect this. By choosing a model with a common probability of misstate-
ment for the population, the auditor is unable to statistically distinguish between
items in the population based on the branch from which they originate. Consider
items 19 and 23 in Table 3.1. Even though these items originate from di↵erent
branches of the auditee, the eight column shows that they both have the same
estimated probability of misstatement. This statistical model raises the question:
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s = 1,...,S branches
i = 1,...,n items

Figure 3.4: Graphical representation of a statistical model to estimate the proba-
bility of misstatement ✓ in a population while taking the control intensity x into
account and assuming no di↵erences between branches s.

Why should an auditor incorporate the branch into the statistical model after
stating that the branch does not influence the probability of misstatement? In
practice, this model may occur for pragmatic reasons. For example, a group audi-
tor, knowing that all operating companies use the same processes and IT systems,
may still want to distribute the audit work amongst the auditors of the individual
operating companies and use s as an index indicating the operating companies.

3.3.2.2.2 Incorporating no similarities between strata

Second, suppose the auditor has information indicating that the misstatements in
the auditee’s branches come about in a completely di↵erent manner. For exam-
ple, they are aware that the items in the population are sourced from franchised
branches of the auditee, each with their own internal systems and sta↵. Then, a
statistical model with no relationship between the misstatements in the branches
might be used to describe the situation in practice. The fundamental assumption
of such a model is that there are no similarities between the misstatements in the
branches.

The auditor can explicitly state this assumption in the statistical model by
including an independent parameter �0 for each branch s that represents its own
probability of misstatement: ki,s ⇠ Bernoulli(logit�1(�0,s + �x · xi,s)), see the
right panel of Figure 3.5. In other words, an item’s misstatement is assumed to
be a function of the branch’s probability of misstatement and the control intensity
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of that item. Because the �0,s parameters are independent, no information can
be shared between the branches, and each branch’s samples should be analyzed
independently. For illustrative purposes, we only introduce independent �0,s pa-
rameters and assume that the relationship between the control intensity and the
misstatement is equal for all items, but this is not required.

i = 1,...,n items
s = 1,...,S branches

i = 1,...,n items
s = 1,...,S branches

Figure 3.5: Graphical representation of a statistical model to estimate the prob-
ability of misstatement ✓ in a population while assuming no similarities between
branches s. In addition to this assumption, the model in the right panel takes into
account the control intensity x.

As previously stated, if the auditor has information indicating that the mis-
statements across branches are completely unrelated, this statistical model might
be used to describe the situation in practice. The assumption underlying this
model is at the extreme end of the spectrum, and the statistical results reflect
this. To illustrate, the estimated probability of misstatement for each unseen item
in Table 3.1 is shown in the second to last column. To clearly illustrate the e↵ect of
assuming independent strata, Table 3.1 also contains the results of the statistical
model without the control intensity displayed in the left panel of Figure 3.5. Un-
like the previous approach, this model enables the auditor to distinguish between
items in the population based on the originating branch. Consider items 3 and 19
in the population, which both have a higher estimated probability of misstatement
under this model than under the previous model because, in addition to having
only one control, they also belong to a relatively misstated branch of the audi-
tee. Vice versa, item 23 now has a lower estimated probability of misstatement
because it is part of a branch containing relatively little misstatement. However,
compared to the previous model, more parameters need to be estimated using the
same amount of data, which leads to a reduction in the amount of data available
to estimate each parameter and an increase in the uncertainty of the estimates.
To illustrate, the uncertainty in the estimate for item 19 is 59 percent under this
model, which is considerably higher than in the previous model (26.4 percent).
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3.3.2.2.3 Incorporating di↵erences and similarities between strata

Third, assume the auditor has information indicating that the probability of mis-
statement is likely to be di↵erent in all branches of the auditee but that the
misstatements in the branches come about in a similar manner. For example,
they are aware that items in the population are payments from franchises of the
auditee that are di↵erent in nature but still processed by a centralized purchasing
system. In this case, both the extreme assumptions that the misstatements be-
tween the branches are the same and that the misstatements between the branches
are completely unrelated are unrealistic. Then, a statistical model that reflects
a compromise between these assumptions is a more accurate description of the
situation in practice. The fundamental assumption of such a model is that there
are di↵erences and similarities between the misstatements in the branches.

The auditor can explicitly state this assumption in the statistical model by in-
troducing a set of parameters with a hierarchical structure: ki,s ⇠ Bernoulli(logit�1

(µ + �↵s + �x · xi,s)), see the right panel of Figure 3.6. At the highest level,
this hierarchical structure defines a population distribution for the probability of
misstatement, parameterized by the hyperparameters µ, which represents the lo-
cation of this distribution, and �, which represents the standard deviation of this
distribution (i.e., the heterogeneity between the branches). At the lowest level,
the hierarchical structure includes a unique parameter ↵s for each branch s that
represents the branch’s standardized estimate of the log-odds probability of mis-
statement (Betancourt and Girolami, 2015). Because this type of model defines
parameters at multiple levels, it is generally referred to as a multilevel model
(Gelman and Hill, 2007, p. 251).

i = 1,...,n items
s = 1,...,S branches

i = 1,...,n items
s = 1,...,S branches

Figure 3.6: Graphical representation of a statistical model to estimate the prob-
ability of misstatement ✓ in a population assuming di↵erences and similarities
between branches s. In addition to this assumption, the model in the right panel
takes into account the control intensity x.

A multilevel model is a conceptual compromise between the two extreme as-
sumptions of the preceding models. In a multilevel model, the auditee’s branches
are explicitly related to each other via the population distribution, which means
that information can be statistically shared between them. This has the e↵ect of
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shifting the estimates of the misstatement in the branches towards the population
estimate by some amount. This can be demonstrated by revisiting the estimate
of item 3 in Table 3.1. To clearly illustrate the e↵ect of the multilevel model, Ta-
ble 3.1 also contains the results of the statistical model without control intensity,
see the left panel of Figure 3.6. In comparison to the high estimate of the previ-
ous model, the estimate for this item under the multilevel model is substantially
lower and more realistic. This shows that the multilevel model assists in bring-
ing these unrealistic estimates–—based on relatively little information—–closer to
the population estimate. Furthermore, because information in one branch can be
combined with information from other branches, there is more information avail-
able to estimate each parameter in the model, and therefore the item estimates
will become less uncertain (Efron and Morris, 1977). Take, for example, item 19
in the population. The previous model estimates this item with an uncertainty of
59 percent, but the multilevel model estimates this item with an uncertainty of
39.4 percent. Another example of this is item 3000, which under the multilevel
model has the least uncertain estimate of all models with an uncertainty of 23.4
percent. This shows that multilevel models introduce some bias into the statistical
model, resulting in lower variance in the estimates (Gelman et al., 2013, p. 101;
Hastie et al., 2001, Chapter 2). For this reason, these types of models are applied
in a variety of scientific fields, including auditing (Laws and O’Hagan, 2002), to
account for underlying relationships between groups in the data (Gelman et al.,
2013, Chapter 5). Note that, while not the focus of the current chapter, a mul-
tilevel model is not restricted to including only two levels and can be expanded
when more than two levels are defined (Gelman and Hill, 2007, pp. 32–34).

As previously stated, if the auditor has information indicating that the proba-
bility of misstatement is likely to be di↵erent across the auditee’s branches but that
the misstatements come about in a similar manner, this statistical model might
be used to describe the situation in practice. The two extreme assumptions, that
misstatement across branches is identical and that misstatement between branches
is completely unrelated, are often unrealistic. Therefore, incorporating a multi-
level structure into the statistical model can strike a balance between these two
extremes and help the auditor better align their statistical model with the situ-
ation in practice. However, including a multilevel component in the model also
complicates the model structure and makes the required calculations more di�-
cult. This means that the auditor must work well with a statistician to ensure the
statistical model can be adequately explained and justified.

3.3.3 Consolidating item estimates to a population estimate

So far, all that has been accomplished is a statistical model that, given the charac-
teristics of the items in the population, estimates the probability of misstatement
for each item in the population. Before the auditor can use this model to perform
inference about the population, they must consider whether the sample is repre-
sentative of the population with respect to the covariates. In other words, they
must determine whether the distribution of covariates in the sample matches that
of the population. If this is the case, the auditor can use the model parameters
directly to perform inference about the probability of misstatement in the popula-
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tion. However, if this is not the case, and the auditor extrapolates the parameter
estimates as is, their estimate of the probability of misstatement in the population
will be biased.

In practice, auditors will almost always find themselves in the last situation.
The reason for this is that auditors commonly use stratification in their sample
evaluation (Hall et al., 2021). Stratification is the division of an audit population
into groups (i.e., strata) followed by disproportional sampling of items within the
strata (Cochran, 1977, Chapter 5; Roberts, 1978, Chapter 6). In the previous
section, we have demonstrated how stratification can be accounted for in the sta-
tistical model. However, because stratification involves disproportional sampling,
the representation of the strata in the sample will likely di↵er from their repre-
sentation in the population. For instance, in the running example, the auditor
stratified the items according to which branch they originated from, but instead
of selecting samples proportionally, the auditor selected samples equally across the
branches.

To arrive at a representative estimate of the probability of misstatement in the
total population, the item estimates of the statistical model should be averaged
across all items in the population. This is the key idea behind poststratification
(Gelman and Little, 1997; Park et al., 2004). In the Bayesian framework, because
the auditor has specified a prior distribution, their estimate is not a point estimate
but a posterior probability distribution. Averaging these estimates means that
the poststratification weight for the posterior distribution of each item in the
population is simply 1

N , where N is the total number of items in the population.
For larger data sets, the estimates for each item can be cumbersome to com-

pute, even with a powerful computer. However, if items can be grouped into
subgroups that are similar in all aspects (e.g., items from the same branch with
the same control intensity), poststratification can be made less computationally
intensive by weighting the estimate for a specific subgroup by its proportion in the
population (e.g., our fictitious data set contains 300 items from the first branch
with zero minutes between login and approval, and so the posterior distribution
for this subgroup is weighed by 300

3000
= 0.1). Thus, in general, the poststratifi-

cation procedure can be stated as ✓ =
PS

s=1 ✓sNsPS
s=1 Ns

, where ✓ is the poststratified

population estimate of the probability of misstatement, s is a running index in
the set of S subgroups, ✓s is the estimate of the probability of misstatement for a
specific subgroup, and Ns corresponds to the number of items in that subgroup.
Table 3.2 shows the poststratification weights for all unique combinations of the
originating branch s and the control intensity x in the population from Table 3.1.

The bottom row of Table 3.1 shows the population estimates for the preceding
models. Because each population estimate is an average of all item estimates, they
are subject to the implications of the model at the item level. First, the most likely
population estimate for the model without the covariate is 15 percent, with an as-
sociated uncertainty of 29.9 percent. Second, when control intensity is factored
into the model that assumes to di↵erences between the branches, the most likely
population estimate is 14.2 percent, with an uncertainty of 27.6 percent. In this
case, the incorporated data adjusts the population estimate downwards because
there are relatively more items in the population with high control intensity than
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Table 3.2: Poststratification weights Ns/
P

Ns for the unique combinations in
Table 3.1. The value NA implies that there are no items in the population with
these characteristics.

Control intensity (x)
Branch (s) 0 1 2 3 4 5

1 300

3000

100

3000

100

3000
NA 300

3000
NA

2 200

3000

100

3000

100

3000

200

3000

200

3000

300

3000

3 NA 300

3000

100

3000

200

3000

100

3000

400

3000

in the sample. These items have a low estimated probability of misstatement.
Furthermore, because of the incorporated data, the population estimate has also
become 2.3 percent less uncertain. Third, when a further distinction between in-
dependent strata is made in the model, the population estimate is 19.7 percent,
with a 26.5 percent uncertainty. When compared to the previous model, this es-
timate is higher because the items in the first stratum with low control intensity
are predicted to have a relatively high probability of misstatement. Finally, in the
multilevel model that takes into account control intensity, the most likely popula-
tion estimate is 13.8 percent, with an uncertainty of 26.5 percent. Compared to
the previous model, the population estimate has been adjusted downwards. The
reason for this is that the multilevel approach reduces the variance in the item
estimates, which means that the predicted probability of misstatement for items
in the first stratum with low control intensity is lower than before. Furthermore,
compared to the second model, the population estimate is adjusted downwards
because there are relatively more items in the sample from the first branch than
there are in the population. On average, these items have a higher estimated prob-
ability of misstatement. This example shows how a multilevel model can provide
an accurate population estimate while also allowing for fine-grained estimates at
the item level.

So far, we have demonstrated how to set up and interpret a Bayesian gener-
alized linear model in the context of audit sampling. The key advantage of this
approach is that it enables auditors to incorporate multiple sources of information
into the statistical analysis. Hence, by taking this approach, auditors can bridge
the gap between analytics on integrally available data and analytics on data that
is available on a sample basis and, as a result, derive more knowledge from their
samples. However, because we consider these models in the context of Bayesian
statistics, a critical step is to specify a prior distribution for each parameter in the
model that needs to be estimated. The following section goes over several com-
monly used prior distributions that can be used in a Bayesian generalized linear
model for audit sampling.
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3.4 Prior distributions for generalized linear models

In this section, we will look at a few commonly used prior distributions that can
be used in a Bayesian generalized linear model for audit sampling. As previously
stated, the prior distribution is a probability distribution that incorporates the
auditor’s pre-existing information about the model parameters. This means that
the prior distribution, like the statistical model, is based on assumptions. Once
again, there is a trade-o↵ that the auditor needs to consider: Incorporating in-
formation into the prior can reduce uncertainty in the estimates because more
information is available to estimate the parameters, but it also means that the
incorporated information must be properly justified. Hence, it is in the auditor’s
best interest to consider if there is information available about the parameters in
the model and whether or not this information is worthwhile to incorporate in the
prior distribution. However, specifying a prior distribution that is aligned with
the situation in practice can be di�cult. If the auditor does not wish to construct
a prior distribution themselves, there are several recommendations from the liter-
ature that are easy to understand and justify. For this reason, we recommended
a prior distribution for two types of parameters: those related to continuous co-
variates and those related to the population distribution in a multilevel model.
Note that if there is su�cient data and a reasonable prior is applied, the exact
choice of prior should have no meaningful influence on the parameter estimates.
Nonetheless, we recommend performing a robustness analysis to see if the prior
distribution has a substantial impact on the parameter estimates (see Figure 3.7).
If this is the case, the auditor should provide arguments in favor of choosing one
prior over the other or gather more data to overcome the influence of the prior
distribution.

3.4.1 Prior distributions related to continuous covariates

The symbol � typically represents the model parameters related to continuous,
standardized covariates (except for �0). In our example, for instance, the pa-
rameter �x quantifies the relationship between the control intensity x and the
misstatement in the data. In a Bayesian model, each of the (potentially many) �
parameters to be estimated is assigned a prior distribution.

Prior distributions are typically classified into three types: noninformative
prior distributions; weakly informative prior distributions; and informative prior
distributions. The idea behind a noninformative prior distribution is that it con-
tains no explicit information about the parameter of interest, in this case �x.
There is considerable debate about what constitutes a noninformative prior (e.g.,
Kerman, 2011a; Yang and Berger, 1996), but a prior distribution that assumes all
possible values of �x to be equally likely is a uniform prior on the range [�1,
1] (Carpenter et al., 2017). It should be noted that this prior distribution is
not a proper probability distribution (i.e., it does not integrate to one) and thus
cannot be meaningfully interpreted. However, this can be avoided by restricting
the uniform prior distribution to a specific range of plausible values. A weakly
informative prior distribution is proper, but it is intentionally designed to contain
information that is weaker than the prior information available (Gelman et al.,
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3. Incorporating Audit Information into the Statistical Model

2013, p. 55). Hence, when there is no explicit information available, a weakly in-
formative prior distribution is often preferable over a noninformative prior. Some
recommendations for weakly informative prior distributions for continuous covari-
ates are the Cauchy(0, 2.5) distribution (Gelman et al., 2008), the standard normal
distribution (Gao et al., 2021), or the Student–t distribution with degrees of free-
dom greater than one (Ghosh et al., 2018). The advantage of incorporating little
information into the prior distribution is that the prior distribution is relatively
simple to understand and justify; the disadvantage is that the estimates come with
relatively much uncertainty as a result.
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Figure 3.7: The top panels show the posterior distributions (solid lines) of the
parameter �x using three di↵erent prior distributions: (a) a Uniform(�20, 20)
prior distribution; (b) a Normal(0, 1) prior distribution; and (c) a Cauchy(0, 2.5)
prior distribution. The corresponding prior distribution for �x is provided (dashed
lines). The bottom panels show the posterior modes, the 50 percent and the 95
percent HPD intervals of the estimates of ✓ for the unique combinations of the
control intensity (0–5) and stratum (1–3) alongside the population (Pop).

Di↵erent prior distributions can, of course, be chosen if the auditor can justify
their choice with relevant audit information. For example, if the auditor knows
that the relationship between the control intensity and the misstatement must be
negative, the prior distribution can be limited to only those reasonable values of
the parameter space. However, if the auditor wishes to define an informed prior
distribution, it is recommended to perform a robustness analysis, comparing the
results of the informed prior distribution to the results of the weakly informative
prior distributions presented above. If di↵erent prior distributions produce the
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same estimates, the estimates can be considered robust, and the impact of the
prior can be considered negligible. This generally holds true for large sample sizes
because the posterior distribution is a compromise between the prior distribution
and the data, and this compromise is increasingly controlled by the data as sample
size grows (Gelman et al., 2013, p. 32). However, if the prior proves to be critical
for the auditor’s conclusions, this should be accounted for in the justification of
the final prior distribution.

To show how a robustness analysis can be performed on the multilevel model
that includes control intensity (the last column in Table 3.1), Figure 3.7 depicts
inferences from posterior distributions using three di↵erent priors: a Uniform(�20,
20) prior, a Normal(0, 1) prior, and a Cauchy(0, 2.5) prior. When compared
to the normal prior (middle column), the simplest approach—a uniform prior
restricted to the range [�20, 20]—results in relatively high variance between the
item estimates (left column). Furthermore, the Cauchy prior (right column) also
results in a relatively high variance when compared to the normal prior. The
reason for this e↵ect is that both the uniform and the Cauchy priors assign a
large prior probability to values of �x further away from zero, which induces
a bimodal prior distribution for ✓i with the two modes near 0 and 1. Such a
prior on the individual items implies an expectation that ✓i is likely to be near
0 or 1. Note that the impact of the prior is relatively large in this example
because it is based on a small sample size. However, this impact will decrease as
more data becomes available. Nonetheless, despite the rather small sample size of
twenty, none of the prior distributions had a substantial impact on the population
estimate. Hence, in the remainder of this chapter, we follow Gao et al. (2021) and
use a Normal(0, 1) prior distribution for the � parameters in the statistical model
related to continuous covariates.

3.4.2 Prior distributions related to categorical covariates

The parameters that determine the prior for the population distribution in a mul-
tilevel model are known as hyperparameters (Gelman et al., 2013, p. 101). In our
running example, for instance, the hyperparameters are µ and �, which represent
the location and standard deviation of the population distribution for the log-
odds of the misstatement probabilities for each level of the categorical covariate,
respectively. Using stratified sampling terminology, µ can be interpreted as the
mean of the stratum means and � as the between-stratum standard deviation. All
hyperparameters in a Bayesian model that need to be estimated require a prior
distribution, which is referred to as a hyperprior. For comparableness, we choose a
standard Logistic(0, 1) distribution as a hyperprior for µ because it is the log-odds
transformation of a uniform prior (as used in Section 3.2). More information on
adequate prior distributions for the probability of misstatement in a population
can be found in Derks et al. (2021a). Instead, in this section, we will concen-
trate on the hyperprior for �. In practice, the prior distribution for � influences
the degree to which the stratum estimates are all shifted towards the population
estimate, a phenomenon known as shrinkage (Gelman and Hill, 2007, p. 477).

Again, three types of hyperpriors for � are possible: noninformative hyperpri-
ors; weakly informative hyperpriors; and informative hyperpriors. Like before, a
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3. Incorporating Audit Information into the Statistical Model

prior distribution that assumes all possible values of � to be equally likely is a
uniform prior on the parameter space ranging from zero to some finite maximum
(Gelman et al., 2013). Furthermore, Gelman (2006) suggests using a half-Cauchy
prior distribution or a half-normal prior distribution as a weakly informative prior
for �. These two weakly informative prior distributions have a relatively high
probability mass at zero, indicating that branches are more likely to be similar
than di↵erent. Hence, they contain some information about the variation between
the branches, whereas the uniform prior has no preference for any plausible value
of �. As previously stated, the advantage of using a weakly informative prior is
that the prior distribution is relatively easy to understand and justify, with the
disadvantage being that there is relatively little information about the relationship
between the branches.
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Figure 3.8: The top panels show the posterior distributions (solid lines) of the
between-stratum standard deviation � using three di↵erent prior distributions: (a)
a Uniform(0, 5) prior distribution; (b) a Half-normal(0, 1) prior distribution; and
(c) a Half-Cauchy(0, 1) prior distribution. The corresponding prior distribution
for � is provided (dashed lines). The bottom panels show the posterior modes, 50
percent and 95 percent HPD intervals of the estimates of ✓ for the unique strata
(1–3) and the population (Pop).

Of course, di↵erent choices for the prior distribution are possible if the auditor
can justify their choice with relevant audit information. For example, if the auditor
has information indicating that the branches are relatively similar (e.g., a series
of branches with sta↵ rotating across the branches and one central AO/IC and
one ERP system), they can specify a hyperprior with a high probability mass
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at low values of �. On the other hand, if they have information indicating that
the branches are relatively di↵erent from each other (e.g., branches in a franchise
formula with only central purchasing), they can specify a hyperprior with a high
probability mass at large values of �. Nonetheless, as previously discussed, a
robustness analysis is still recommended. If the prior turns out to be critical for
the auditor’s conclusions, the auditor should be able to justify their choice of prior
distribution.

To demonstrate how such a robustness analysis can be performed on the mul-
tilevel model that includes control intensity, Figure 3.8 depicts inferences from
posterior distributions using three di↵erent priors: a Uniform(0, 5) prior; a Half-
normal(0, 1) prior; and a Half-Cauchy(0, 1) prior. When compared to the half-
normal prior (middle column), the simplest approach—a uniform prior in the range
[0, 5]—results in relatively low shrinkage for the branch estimates (left column).
The use of a half-Cauchy prior (right column) also results in less shrinkage in the
estimates but not in an increase in uncertainty. Furthermore, none of the prior
distributions appeared to have an impact on the population estimate. In the fol-
lowing sections, we will therefore follow Gelman (2006) and use a Half-normal(0,
1) prior distribution for the parameter � in a multilevel model.

3.5 Practical examples

In this section, we apply Bayesian generalized linear modeling to two examples
based on real-world cases. First, we will look at an example of a group audit in
which an auditor decides to use stratification. We use this example to demonstrate
the benefits of including a multilevel structure in the model. Second, we will
look at an example of monetary unit sampling in which an auditor has access to
multiple sources of data for each item. We use this example to demonstrate how
incorporating additional information into the statistical model can increase the
auditor’s e�ciency.

3.5.1 Example 1: Group audit on misstatements in a retail

company

We will start with an example from Derks et al. (2022b) that describes an audit
of group financial statements. The organization in question is a retail company
consisting of twenty branches across the country. In this case, a group auditor
is tasked with forming an opinion on the level of the organization, while twenty
component auditors are required to form an opinion on the level of each individual
branch. For this reason, the group auditor has decided to implement a stratified
sampling procedure. Furthermore, at the branch level, the group auditor antici-
pates that the number of FTEs responsible for administration within each branch
of the auditee will impact the probability of misstatement. We will investigate if
incorporating this information makes a di↵erence in the sample evaluation.
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3.5.1.1 Data

The component auditors collected a sample from each of the twenty branches.
However, because the group auditor expected to find more misstatements at some
branches, a larger sample was drawn from these branches than at others. The
component auditors report the number of misstatements per branch alongside the
number of FTEs, as displayed in Table 3.3. For every branch in the population,
one additional data characteristic is known: the number of FTEs e responsible for
the administration in that specific branch of the auditee.

Table 3.3: Data set containing the branch index (s) number of FTEs (e), number
of items (N), and sample results (n and k) per branch.

Branch (s) FTEs (es) Items (Ns) Samples (ns) Misstatements (ks)
1 5 5000 300 21
2 4 5000 300 16
3 4 5000 300 15
4 3 5000 300 14
5 4 5000 300 16
6 3 5000 150 5
7 2 5000 150 4
8 2 5000 150 3
9 2 5000 150 4
10 3 5000 150 5
11 3 10000 50 2
12 5 10000 50 3
13 3 10000 50 2
14 2 10000 50 1
15 1 10000 50 0
16 1 10000 15 0
17 1 10000 15 0
18 1 10000 15 0
19 3 10000 15 1
20 5 4000 15 3

3.5.1.2 Models

To illustrate the e↵ect of the statistical model on the group– and component
auditors’ conclusions, we specify four generalized linear models for the misstate-
ments ks in each branch s (see Figure 3.9). First, we define the model ks ⇠

Binomial(ns, logit
�1(⇠)), which assumes that all branches have the same probabil-

ity of misstatement. Second, we describe the model ks ⇠ Binomial(ns, logit
�1(⇠s)),

which assumes the misstatements in the branches are completely unrelated. Third,
we formulate the model ks ⇠ Binomial(ns, logit

�1(µ+ �↵s)), which assumes that
there are di↵erences and similarities between the misstatements in the branches.
For comparison, none of these models include the number of FTEs as a covariate.
Therefore, we specify a final model ks ⇠ Binomial(ns, logit

�1(µ+�↵s+�e·es)) that
assumes di↵erences and similarities between the misstatements in the branches and
incorporates the number of FTEs as a covariate.

As discussed in Section 3.4, we specify the following prior distributions: ⇠, ⇠s, µ ⇠

Logistic(0, 1), � ⇠ Normal(0, 1)+, ↵s ⇠ Normal(0, 1) and �e ⇠ Normal(0, 1). After
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fitting the model to the data, we apply poststratification to arrive at a representa-
tive estimate of the probability of misstatement ✓ in the population. For explana-
tory purposes, the R (R Core Team, 2022) code for fitting these models to the
data in Table 3.3 and applying poststratification can be found in Appendix 3.B.

 

 

s = 1,...,S strata s = 1,...,S strata

s = 1,...,S strata s = 1,...,S strata

Figure 3.9: Graphical representations of four models to estimate the probability
of misstatement ✓ in a population. The figure shows a model that incorporates no
di↵erences between strata (red), a model that incorporates no similarities between
strata (blue), a model that incorporates di↵erences and similarities between strata
(green), and a model that incorporates di↵erences and similarities and takes into
account FTEs (yellow).

3.5.1.3 Comparison of results

Figure 3.10 depicts the population and branch estimates for the four models. The
top panel displays the 95 percent HPD intervals (i.e., the 95 percent most likely
values of the posterior distribution) and the population estimate of the probability
of misstatement under each of the four models. The model that assumes no
di↵erences between the branches yields an estimated probability of misstatement
of 4.5 percent and a 5.3 percent upper bound. The 95 percent HPD interval of the
posterior distribution comes with an uncertainty of 1.6 percent. In comparison,
the model that assumes no similarities between the strata yields an estimate of
5.7 percent and an upper bound of 8.1 percent. The uncertainty in the 95 percent
HPD interval is 4 percent. Relative to the second model, the estimate of the
first model is 4�1.6

4
= 60 percent less uncertain on the population level. The
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second model produces not only a more uncertain estimate but also a considerably
higher estimate. The latter trait can be understood by the fact that the second
model employs the rather conservative uniform prior for every branch. Since
the second model can be interpreted as 20 isolated small samples, the dilution
of this conservatism by adding observations from the sample is much less in the
second model compared to the other models. In comparison, the multilevel model
decreases the uncertainty by 52.5 percent over the second model. When additional
data, in this case, the number of administrative FTEs, is included in the multilevel
model, the population estimate is 62.5 percent less uncertain than under the second
model. This demonstrates that the e�ciency of the group auditor can be improved
by using a multilevel model, and that it can be further improved by including
relevant covariates.

The bottom four panels depict the 95 percent HPD intervals around the branches’
most likely probability of misstatement. These panels demonstrate how the es-
timates of the first two models are di↵erent from those of the multilevel models.
The branch estimates in the first model are identical and come with an average
uncertainty of 1.6 percent, while the branch estimates in the second model vary
but have an average uncertainty of 11 percent. In comparison, this average is 4
percent for the multilevel model, while including the FTEs results in the estimates
having an average uncertainty of 2.8 percent. The panels in the bottom row show
how, in the two models that include a multilevel structure, the estimates in the
branches (dotted line) are all shifted towards the population estimate (dashed
line). This occurs to a greater extent in branches with few samples taken and
to a lesser extent in branches with many samples taken. Consider branch 20, in
which 15 items were inspected and the auditor had the unfortunate experience of
discovering three misstatements. According to the second model, the auditor must
conclude that this branch has an exceptionally high probability of misstatement
( 3

15
= 20 percent), which is unlikely based on the sample data from the other

branches (Efron and Morris, 1977). However, when estimating the probability
of misstatement in this branch, the multilevel model gives a high weight to the
population estimate. This is a natural consequence. After all, when there is little
information available in a branch, it is preferable to rely more on what is already
known from the population. This shows that a multilevel model can not only give
the group auditor an accurate estimate but also give the component auditors a
more certain estimate of the misstatement in their branch.

In sum, creating a statistical model that incorporates data from various sources
can help auditors become more e�cient and can increase transparency because
auditors can explain what separates misstated items in the population.
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Figure 3.10: Estimates (modes, 95 percent HPD intervals and posterior distribu-
tion) for the probability of misstatement in the population (✓, top panel) and in the
twenty branches (✓s, bottom panels, posterior distributions omitted) of a model
that incorporates no di↵erences between strata (red), a model that incorporates
no similarities between strata (blue), a model that incorporates di↵erences and
similarities between strata (green), and a model that incorporates di↵erences and
similarities and takes into account FTEs (yellow). The black lines in the bottom
panels show, respectively, the proportion of misstatement found in the aggregated
sample (dashed line) and the proportion of misstatement found per branch in the
sample (dotted line).

69



3. Incorporating Audit Information into the Statistical Model

3.5.2 Example 2: Audit on legitimacy of subsidy payments

In this example, we will look at an instance of determining the legitimacy of sub-
sidy payments. The scenario is as follows: An auditor is asked to declare with
95 percent certainty that no more than 10 percent of subsidy payments does not
comply with the rules and regulations set out in the subsidy scheme. To quantify
the uncertainty associated with their conclusion, the auditor must specify a statis-
tical model that connects the data from the sample to a parameter that represents
the overstatement in the population. In monetary unit sampling, this statistical
model typically only takes into account the data about the overstatements in the
sample (Stewart, 2012). However, if there are multiple sources of data available,
the statistical model can take this data into account as well. In this example, prior
to performing tests of details, the auditor obtained two relevant characteristics for
each payment in the population: the length of the time period (in days) between
the delivery date of the service and the booking date and the number of FTEs
with access to the auditee’s computer system who could modify that payment.
We will investigate if including this information in the sample evaluation makes
the auditor more e�cient.

3.5.2.1 Data

The population for this example consists of N = 3500 items representing subsidy
payments. For illustrative purposes, suppose that the auditor expects 4.6 percent
of the sample to contain misstatements. In monetary unit sampling, these op-
tions typically correspond to a planned sample size of 100 samples (Stewart, 2012;
American Institute of Certified Public Accountants (AICPA), 2019). Because the
auditor did not conduct any risk assessment procedures, there is no explicit prior
information about the risk of material misstatement in the population. Hence,
they decide to select and audit the full sample of 100 payments. In monetary
unit sampling, the misstatement in a payment is typically quantified using the
taint. The taint ti of a payment i is the proportional overstatement of a payment,
which is defined as a function of the booked value, bi, and the actual value, ai, as
ti =

bi�ai
bi

. In the sample of n = 100 payments, the auditor discovers ten payments
that are partially overstated. Table 3.4 displays these ten partial overstatements
in the sample, which result in a total taint of k =

Pn
i=1

ti = 6. Hence, the average
taint in this sample is 6 percent.

3.5.2.2 Models

To construct a statistical model for this scenario, we define a functional relation-
ship between the data and a parameter representing the overstatement in the
population. In monetary unit sampling, the data t is not binary but continuous,
which means that the Bernoulli distribution cannot be used to describe the data.
In particular, because taints lie in the unit interval, we need to select a continuous
likelihood that confines this range. The beta distribution conveniently possesses
these characteristics, making it a suitable candidate for the likelihood. A typical
way to specify the Beta(↵, �) likelihood is to define the ↵ and � parameters as
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Table 3.4: The ten payments in the sample of n = 100 items with a non-zero taint.
The table shows each payment’s index in the sample (i), booked value (bi), actual
value (ai), taint (ti), the booking delay (di) and the number of FTEs (ei) that
can modify that payment in the internal computer systems. The ninety items in
the sample with a taint of zero are not shown in this table.

i Book value (bi) Actual value (ai) Taint (ti) Booking delay (di) FTEs (ei)
2 307.29 184.37 0.4 20 9
17 388.45 155.38 0.6 20 9
22 246.90 123.45 0.5 15 8
45 102.68 51.34 0.5 21 9
46 542.56 108.51 0.8 26 9
57 290.38 174.23 0.4 22 9
63 381.64 114.49 0.7 16 9
74 239.26 47.85 0.8 23 9
88 423.30 126.99 0.7 18 9
99 226.86 90.74 0.6 22 8

↵ = �⌫ and � = (1��)⌫ (Smithson and Verkuilen, 2006; Verkuilen and Smithson,
2012), yielding the statistical model ti ⇠ Beta(�⌫, (1� �)⌫).

In this model, the parameter � = ↵
↵+� can be interpreted as the average taint,

and ⌫ = ↵ + � is a precision parameter that controls the concentration of the
distribution. In this formulation, the parameter � is the one that is most relevant
for the auditor’s inferences about the overstatement in the population. Because
the parameter � is constrained to the unit interval, it is convenient to apply the
log-odds transformation ln( �

1�� ) = logit(�). The advantage of this setup is that a
set of parameters can be defined to describe the log-odds of the average taint.

To illustrate the e↵ect of including multiple sources of data into the statistical
model, we specify three generalized linear models for the taint ti in each item i
(see Figure 3.11). First, we specify the model � = logit�1(�0 + �d · di), which
assumes that the taint of a payment is a function of its booking delay. Second,
we specify the model � = logit�1(�0 + �e · ei), which assumes that the taint of
a payment is a function of the number of FTEs that can modify that payment.
Finally, we specify the model � = logit�1(�0+�d ·di+�e ·ei), which assumes that
both covariates play a role in determining the taint of a payment.

Because in this scenario there is no pre-existing information about the av-
erage taint in the population, we specify a logistic prior distribution for �0:
�0 ⇠ Logistic(0, 1). After standardizing the covariates to have a mean of zero
and a standard deviation of 1

2
, we specify independent prior distributions for the

remaining � parameters in the model: �d,�e ⇠ Normal(0, 1). Finally, we specify
a Pareto prior distribution for ⌫: ⌫ ⇠ Pareto(1, 3

2
) (Carpenter, 2016; Derks et al.,

2022b).
We transform the taints in the sample of size n in accordance with a standard

procedure for dealing with the beta likelihood (Smithson and Verkuilen, 2006,

p. 61), yielding a set of transformed taints ti =
ti(n�1)+

1
2

n . After fitting the model
to the data, we apply poststratification to arrive at a representative estimate of
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3. Incorporating Audit Information into the Statistical Model

the average taint � in the population. For explanatory purposes, the R (R Core
Team, 2022) code for fitting these models to the data partly shown in Table 3.4
and applying poststratification can be found in Appendix 3.B.

 
i = 1,...,n items

i = 1,...,n itemsi = 1,...,n items

Figure 3.11: Graphical representations of four models to estimate the average taint
� in a population. The figure shows the basic model that does not incorporate
any covariates (red), a model that incorporates booking delay (blue), a model
that incorporates FTEs (green), and a model that incorporates booking delay and
FTEs (yellow).

3.5.2.3 Comparison of results

To investigate if including the additional information in the sample evaluation
has made the auditor more e�cient, we use the results of three basic methods
as a baseline. First, evaluating this sample as prescribed by guidance on audit-
ing standards (e.g., American Institute of Certified Public Accountants (AICPA),
2019; Stewart, 2012, pp. 11–12) yields a most likely misstatement of 6 percent
and a 95 percent upper bound of 11.84 percent. Second, using a basic Bayesian
approach with a uniform prior yields a Beta(1 + k = 7, 1 + n� k = 95) posterior
distribution that, in comparison with the first baseline, has a reduced 95 percent
upper bound of 11.39 percent. Third, evaluation using the commonly used Stringer
bound (Bickel, 1992) reduces the 95 percent upper bound further to 11.19 percent.
Thus, of the three basic approaches, the Stringer bound yields the most e�cient
95 percent upper bound but does not yet permit the auditor to conclude that they
have obtained su�cient information to conclude that the misstatement is below
the performance materiality of 10 percent. This means that, if the auditor can
bring the 95 percent upper bound of their estimate below 10 percent, they will
have used their existing sample more e�ciently because they will have gathered
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su�cient information to determine that there are no material misstatements in
the population.

Because auditors typically base their conclusion on the 95 percent upper bound
of the posterior distribution, they can increase their e�ciency by reducing the un-
certainty in the posterior distribution for �. Incorporating multiple sources of data
achieves this because there is more information available to estimate the average
taint in the population. To illustrate, Figure 3.12 shows the posterior distributions
for � under the three generalized linear models alongside the baseline Beta(7, 95)
distribution. The two models including a single covariate produce a posterior dis-
tribution that is less wide and peaks at a lower value than the baseline, which is
associated with a reduction in the upper bound. These estimates are less uncer-
tain because more information is available, and they are lower because the sample
mostly consists of misstatements in items with high values of the covariates while
the population only contains a small number of these items. Furthermore, the
model in which both covariates are included produces the most e�cient estimate:
The most likely average taint in the population is estimated to be 1.9 percent,
with a 95 percent upper bound of 2.33 percent. Thus, including both covariates
provided the auditor with the greatest increase in e�ciency, lowering the upper
bound by at least 8.86 percent when compared to a more traditional approach.
To put this into perspective, if the auditor wanted to reduce their upper bound by
this much using a traditional approach, they would have needed to observe at least
390 additional, error-free samples. Furthermore, by incorporating the covariates
into the model, the auditor has obtained su�cient information to conclude that
the misstatement in the population is below the performance materiality of 10
percent. This means that the auditor has used their sample more e�ciently when
compared to a traditional approach.

0.00

0.05

0.10

0.15

φ

No covariates Days outstanding FTEs Days outstanding + FTEs

Figure 3.12: Estimates (modes, 95 percent HPD intervals and posterior distribu-
tion) for the average taint � in the population of the basic model without covariates
(Beta(7, 95), red), a model that includes booking delay (blue), a model that in-
cludes FTEs (green), and a model that includes booking delay and FTEs (yellow).
In comparison to the basic approach, the inclusion of additional data results in
lower and less uncertain estimates and an increase in e�ciency.
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In the remainder of this subsection, we focus on the results of the model that
includes both covariates. Because the auditor statistically estimates the relation-
ship between the number of FTEs, the booking delay, and the average taint, the
auditor can use the statistical results to gain an understanding of the misstate-
ment in the population. For example, the parameter �d is estimated to be 0.456
[0.194; 0.701]. This means that, when the number of FTEs is kept constant, a
one-standard-deviation increase in booking delay will likely multiply the odds of
the average taint (i.e., �

1�� ) by about e0.456 = 1.578 [1.214; 2.016]. Furthermore,

the parameter �e is estimated to be 1.587 [1.381; 1.786]. Similarly, when the book-
ing delay is kept constant, an increase of one standard deviation in the number
of FTEs is likely to multiply �

1�� by approximately e1.587 = 4.889 [3.979; 5.966].
From these results, the auditor can infer that the average taint is more strongly
influenced by the number of FTEs that have access to the auditee’s computer
system and could alter a payment than by the booking delay of the payment.
Using these findings, the auditor can reveal what distinguishes misstatements in
the population and communicate this information to the auditee, who can then
respond appropriately. For example, the auditee may decide to limit employees’
capabilities to modify payments in their computer systems. If the auditor had
evaluated the sample without including the covariates in the statistical model,
neither the auditee nor the auditor would have had this information.

Also in a monetary unit sampling context where no stratification is applied,
creating a statistical model that incorporates data from various sources can help
auditors become more e�cient and can increase transparency because auditors
can explain what separates misstated items in the population.

3.6 Practical recommendations

In the previous sections, we have discussed and demonstrated the merits of a
Bayesian generalized linear modeling approach to audit sampling. However, im-
plementing this approach in practice may come with several challenges for auditors.
For instance, it may be di�cult to weigh the pros and cons of a Bayesian general-
ized linear model or it may be di�cult to report on the statistical model and its
outcomes. A lack of guidance on these issues may unnecessarily make the use of a
Bayesian generalized linear model less appealing to auditors. For this reason, we
provide recommendations for implementing this approach in practice.

The advantages of this approach have been discussed in detail in this chapter.
In previous sections, we have demonstrated how a Bayesian generalized linear
modeling approach to audit sampling can assist auditors in providing an audit
opinion that is specifically tailored to the audit and the auditee. Because auditors
can explain the impact of the data on the misstatement, the auditee can gain
valuable insights, and the auditor can add value to the auditee. Moreover, we
have shown that a Bayesian generalized linear model can also help to increase
e�ciency in real-world scenarios.

One aspect of this approach to take into account is that obtaining the data and
justifying the statistical model may take time and e↵ort. Hence, the auditor must
carefully make an assessment. For example, if evaluating a sample is expensive or
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if there is a lot of data easily obtainable, the use of a Bayesian generalized linear
model can be worthwhile. For instance, if the auditor knows there is information
that plays a role in determining the misstatement, this data is easy to obtain and
that sampling an extra unit is costly, the benefits of incorporating the information
most likely outweigh the time and e↵ort spent justifying the statistical model.
However, if they are conducting an audit where collecting more data is costly, the
time and money spent justifying the statistical model might not be worth the time
and money spent selecting and auditing the samples that are potentially reduced.
For example, if they know that obtaining this information is time-consuming or
di�cult, and that selecting and auditing extra samples is cheap, it may be more
pragmatic to evaluate a potentially larger sample using the basic statistical model
in Figure 3.2. We recommend that auditors carefully weigh the pros and cons of
incorporating data into the statistical model to determine whether the benefits
outweigh the time and e↵ort required.

Furthermore, to ensure that the statistical model can be explained and in-
terpreted correctly, the use of a Bayesian generalized linear modeling approach
requires auditors to be at least somewhat familiar with statistical inference. In
practice, this means that the auditor must collaborate closely with a statistician
to construct and explain the statistical model. If this is not possible or desirable,
a more straightforward method should be used. We advise auditors to openly
discuss these issues with the auditee in order to properly balance the pros and
cons of a Bayesian generalized linear model.

Finally, statistical reporting demands more e↵ort when a statistical model is
more complex. If auditors decide to use a Bayesian generalized linear model for
audit sampling, they must be able to clearly report the statistical results to the
auditee. This means that the audit report should include information about the
statistical model and its results. When reporting on the statistical outcomes, we
recommend providing a description, visualization and justification of the statisti-
cal model and the prior distribution, that is, the family of the distribution and
its parameter values (van Doorn et al., 2021). In the presentation of parameter
estimates, we advise including figures of the prior and posterior distributions along
with summaries of the distributions, such as the most likely value and 95 percent
HPD interval (see Appendix 3.C for an example report). We also recommend per-
forming and reporting a robustness analysis as described in Section 3.4. Finally,
a final and important part of reporting is making the computer code and data
available to the auditee in a way that is not only transparent but also enables easy
reproduction of the results (Kruschke, 2021). Reporting on the main conclusions
in this manner increases transparency for stakeholders of the audit as it allows for
a skeptical assessment of the statistical claims in the audit report.

3.7 Concluding comments

In this chapter, we have shown that Bayesian generalized linear modeling can
be used to include multiple sources of data in the sample evaluation and, as a
result, align the statistical model for audit sampling with the situation in prac-
tice. In short, this comes with two concrete advantages for auditors. First, it
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improves auditors’ ability to form an opinion about the misstatement in the pop-
ulation because they can explain the impact of the integrated information on the
misstatement in a transparent manner. Second, it improves auditors’ ability to
detect misstatements because they can more accurately estimate which items in
the population are likely to be misstated. Because of these practical benefits, we
argue that implementing this approach in practice may assist auditors in over-
coming the data-analytic precipice they are currently facing. That is, especially
in today’s information-rich audits, these techniques are critical for facilitating the
e↵ective and e�cient integration of audit data into tests of details. Applying these
techniques in practice does not have to be di�cult; they are supported by user-
friendly open-source software such as R (R Core Team, 2022) and JASP (JASP
Team, 2022), and code to replicate all examples in this manuscript is available in
the appendices to this chapter. Furthermore, we hope that by making these meth-
ods available in the open-source software JASP for Audit (Derks et al., 2021b),
auditors will use Bayesian modeling to evaluate audit samples more often.

It is worth noting that we have demonstrated an approach to audit sampling
that requires the auditor to specify a single statistical model to describe both inte-
grally available data, as well as data that can only be retrieved on a sample basis.
However, in practice, the appropriate model for the situation may not always be
obvious. It can be di�cult, for instance, to determine the relationship between
the strata in the data or which covariates do or do not play a role in determining
the misstatement. Auditors may want to compare several models and select the
one that best describes the data. For this purpose, the Bayesian framework allows
auditors to calculate the Bayes factor, a measure that quantifies the statistical ev-
idence in favor of one model over another model (Kass and Raftery, 1995; Fragoso
et al., 2018). By quantifying and comparing the evidence for multiple models
(e.g., a model with and a model without a specific covariate), auditors can assess
whether the addition of a parameter to the model has a meaningful impact on the
model predictions. For this reason, the Bayes factor can help auditors select the
most appropriate model out of many possible options.

In sum, the use of Bayesian inference, and particularly the use of Bayesian
generalized linear modeling, in audit sampling can help auditors better meet ex-
pectations for the role of data in an audit. The reason for this is that Bayesian
generalized linear modeling allows data to inform the auditor’s approach to tests of
details. If these techniques manage to gain a foothold in auditing theory, it is not
di�cult to predict that auditors will evaluate their samples using more advanced
statistical models—–and reap their benefits—–in the near future. It should be
noted that the use of a Bayesian (generalized) linear model to account for multi-
ple sources of data is not limited to the context of audit sampling. For instance,
the auditor may want to estimate the auditee’s cost of sales on the basis of an
industry benchmark data set containing multiple data characteristics, or they may
want to estimate an employee’s salary based on multiple data characteristics. Even
though the context is di↵erent, Bayesian (generalized) linear models retain their
advantages; that is, they can incorporate both pre-existing information and data
into the statistical model, resulting in an increase in e�ciency for the auditor.
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3.A The logistic transformation

The combined output of a set of parameters in a linear model can take on any
continuous value in the range [�1, 1]. However, in audit sampling, the auditor
is interested in estimating the probability of misstatement or the average taint, a
quantity that is restricted to the range [0, 1]. Without applying a transformation
to the output of the linear model, most output values do not lie in the unit interval.
A generalized linear model solves this problem by introducing a link function that
converts the output of the statistical model from an unbounded quantity to the
unit interval.

Statistically, the link function g(✓) = ⇠ connects the value ✓ in the range [0, 1]
to the output ⇠ of a linear model in the range [�1, 1]. Several options for the
link function exist (any function whose domain is the unit interval can be used),
but for illustrative purposes we have focused on an intuitive link function: the
logistic function g(✓) = ln( ✓

1�✓ ), see Figure 3.13. This link function is convenient
because it allows for the interpretation of the output of the linear model ⇠ as the
log-odds of the value ✓. For example, the value ✓ = 0.1 corresponds to odds of 19
and therefore log-odds of ⇠ = ln(19) = �2.197. The inverse link function g�1(⇠)
can be expressed as 1

1+e�⇠ and is used to transform the output ⇠ of the linear
model to the value ✓. For instance, a model output of ⇠ = �2.197 is transformed
to a value ✓ = 1

1+e2.917 = 0.1. We refer the interested reader to Gelman and Hill
(2007, Chapter 6) for further reading on the link function.
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Figure 3.13: The (inverse) logistic link function that transforms the unbounded
output ⇠ of the linear model to the value ✓ in the unit interval.

77



3. Incorporating Audit Information into the Statistical Model

3.B R code to reproduce results

This appendix contains R (R Core Team, 2022) and Stan (Carpenter et al., 2017)
code for specifying the models discussed in this chapter and reproducing their
results. The online appendix containing the R files and the data can be found at
https://osf.io/m7xu5/.

3.B.1 Example 0: Illustrative

The R code below loads the population from the illustrative example.

library(rstan) # Install using install.packages("rstan")

standardize <- function(x) {
(x - mean(x)) / (sd(x) * 2) # Standardizes input to mean 0 and sd 0.5

}

# Read and standardize data
population <- read.csv("https://osf.io/y9jmc/download")
population$x_std <- standardize(population$x)
sample <- population[!is.na(population$k), ]

# Create variables of relevant data
n <- nrow(sample)
k <- sample$k
S <- length(unique(population$s))
j <- sample$s
x <- sample$x_std
N <- nrow(population)
J <- population$s
X <- population$x_std

The model can be fitted to the data by filling in the model code and calling stan.

model_code <- "" # Fill in the code of the Stan model (see below)
fit <- stan(model_code, data = list(n = n, ...)) # See "data { }" for ...

3.B.1.1 No covariate — No branch di↵erences

data {
int<lower=0> n; //# Number of items in sample
int<lower=0, upper=1> k[n]; //# Misstatement of items in sample
int N; //# Number of items in population

}
parameters {
real xi;

}
model {
xi ⇠ logistic(0, 1);
for (i in 1:n) {
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k[i] ⇠ bernoulli_logit(xi);
}

}
generated quantities {
vector[N] theta_i;
real theta;
for (i in 1:N) {
theta_i[i] = inv_logit(xi);

}
theta = mean(theta_i);

}

3.B.1.2 No covariate — No branch similarities

data {
int<lower=0> n; //# Number of items in sample
int<lower=0, upper=1> k[n]; //# Misstatement of items in sample
int N; //# Number of items in population
int j[n]; //# Vector of branch indices in sample
int J[N]; //# Vector of branch indices in population
int S; //# Number of branches in population

}
parameters {
real xi_s[S];

}
model {
for (s in 1:S) {
xi_s[s] ⇠ logistic(0, 1);

}
for (i in 1:n) {
k[i] ⇠ bernoulli_logit(xi_s[j[i]]);

}
}
generated quantities {
vector[N] theta_i;
real theta;
for (i in 1:N) {
theta_i[i] = inv_logit(xi_s[J[i]]);

}
theta = mean(theta_i);

}

3.B.1.3 No covariate — Multilevel

data {
int<lower=0> n; //# Number of items in sample
int<lower=0, upper=1> k[n]; //# Misstatement of items in sample
int N; //# Number of items in population
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int j[n]; //# Vector of branch indices in sample
int J[N]; //# Vector of branch indices in population
int S; //# Number of branches in population

}
parameters {
real mu;
real<lower=0> sigma;
real alpha_s[S];

}
model {
mu ⇠ logistic(0, 1);
sigma ⇠ normal(0, 1);
for (s in 1:S) {
alpha_s[s] ⇠ normal(0, 1);

}
for (i in 1:n) {
k[i] ⇠ bernoulli_logit(mu + sigma * alpha_s[j[i]]);

}
}
generated quantities {
vector[N] theta_i;
real theta;
for (i in 1:N) {
theta_i[i] = inv_logit(mu + sigma * alpha_s[J[i]]);

}
theta = mean(theta_i);

}

3.B.1.4 With covariate — No branch di↵erences

data {
int<lower=0> n; //# Number of items in sample
int<lower=0, upper=1> k[n]; //# Misstatement of items in sample
int N; //# Number of items in population
vector[n] x; //# Control intensity in sample
vector[N] X; //# Control intensity in population

}
parameters {
real beta_0;
real beta_x;

}
model {
beta_0 ⇠ logistic(0, 1);
beta_x ⇠ normal(0, 1);
for (i in 1:n) {
k[i] ⇠ bernoulli_logit(beta_0 + beta_x * x[i]);

}
}
generated quantities {
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vector[N] theta_i;
real theta;
for (i in 1:N) {
theta_i[i] = inv_logit(beta_0 + beta_x * X[i]);

}
theta = mean(theta_i);

}

3.B.1.5 With covariate — No branch similarities

data {
int<lower=0> n; //# Number of items in sample
int<lower=0, upper=1> k[n]; //# Misstatement of items in sample
int N; //# Number of items in population
vector[n] x; //# Control intensity in sample
vector[N] X; //# Control intensity in population
int j[n]; //# Vector of branch indices in sample
int J[N]; //# Vector of branch indices in population
int S; //# Number of branches in population

}
parameters {
real beta_0[S];
real beta_x;

}
model {
for (s in 1:S) {
beta_0[s] ⇠ logistic(0, 1);

}
beta_x ⇠ normal(0, 1);
for (i in 1:n) {
k[i] ⇠ bernoulli_logit(beta_0[j[i]] + beta_x * x[i]);

}
}
generated quantities {
vector[N] theta_i;
real theta;
for (i in 1:N) {
theta_i[i] = inv_logit(beta_0[J[i]] + beta_x * X[i]);

}
theta = mean(theta_i);

}

3.B.1.6 With covariate — Multilevel

data {
int<lower=0> n; //# Number of items in sample
int<lower=0, upper=1> k[n]; //# Misstatement of items in sample
int N; //# Number of items in population
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vector[n] x; //# Control intensity in sample
vector[N] X; //# Control intensity in population
int j[n]; //# Vector of branch indices in sample
int J[N]; //# Vector of branch indices in population
int S; //# Number of branches in population

}
parameters {
real mu;
real<lower=0> sigma;
real alpha_s[S];
real beta_x;

}
model {
mu ⇠ logistic(0, 1);
sigma ⇠ normal(0, 1);
beta_x ⇠ normal(0, 1);
for (s in 1:S) {
alpha_s[s] ⇠ normal(0, 1);

}
for (i in 1:n){
k[i] ⇠ bernoulli_logit(mu + sigma * alpha_s[j[i]] + beta_x * x[i]);

}
}
generated quantities {
vector[N] theta_i;
real theta;
for (i in 1:N) {
theta_i[i] = inv_logit(mu + sigma * alpha_s[J[i]] + beta_x * X[i]);

}
theta = mean(theta_i);

}

3.B.2 Example 1: Group audit on misstatements in a retail

company

The R code below loads the population from the example concerning a group audit
on misstatements in a retail company.

library(rstan) # Install using install.packages("rstan")

standardize <- function(x) {
(x - mean(x)) / (sd(x) * 2) # Standardizes input to mean 0 and sd 0.5

}

# Read and standardize data
sample <- read.csv("https://osf.io/akrvj/download", sep = ";")
sample$x_std <- standardize(sample$x)

# Create variables of relevant data
S <- nrow(sample)
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n <- sample$n
k <- sample$k
Ns <- sample$N
e <- sample$x_std

The model can be fitted to the data by filling in the model code and calling stan.

model_code <- "" # Fill in the code of the Stan model (see below)
fit <- stan(model_code, data = list(S = S, ...)) # See "data { }" for ...

3.B.2.1 No covariate — No branch di↵erences

data {
int<lower=1> S; //# Number of branches in population
int<lower=0> n[S]; //# Number of items per branch
int<lower=0> k[S]; //# Number of misstatements per branch

}
parameters {
real xi;

}
model {
xi ⇠ logistic(0, 1);
k ⇠ binomial_logit(n, xi);

}
generated quantities {
real<lower=0, upper=1> theta;
theta = inv_logit(xi);

}

3.B.2.2 No covariate — No branch similarities

data {
int<lower=1> S; //# Number of branches in population
int<lower=0> n[S]; //# Number of items per branch
int<lower=0> k[S]; //# Number of misstatements per branch
vector<lower=0>[S] Ns; //# Number of items in population per branch

}
parameters {
real xi_s[S];

}
model {
xi_s ⇠ logistic(0, 1);
k ⇠ binomial_logit(n, xi);

}
generated quantities {
vector<lower=0, upper=1>[S] theta_s;
real<lower=0, upper=1> theta;
for (i in 1:i) {
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theta_s[i] = inv_logit(xi_s[s]);
}
theta = dot_product(Ns, theta_s) / sum(Ns);

}

3.B.2.3 No covariate — Multilevel

data {
int<lower=1> S; //# Number of branches in population
int<lower=0> n[S]; //# Number of items per branch
int<lower=0> k[S]; //# Number of misstatements per branch
vector<lower=0>[S] Ns; //# Number of items in population per branch

}
parameters {
real mu;
real<lower=0> sigma;
vector[S] alpha_s;

}
model {
mu ⇠ logistic(0, 1);
sigma ⇠ normal(0, 1);
alpha_s ⇠ normal(0, 1);
k ⇠ binomial_logit(n, mu + sigma * alpha_s);

}
generated quantities {
vector<lower=0, upper=1>[S] theta_s;
real<lower=0, upper=1> theta;
for (i in 1:S) {
theta_s[i] = inv_logit(mu + sigma * alpha_s[i]);

}
theta = dot_product(Ns, theta_s) / sum(Ns);

}

3.B.2.4 With covariate — Multilevel

data {
int<lower=1> S; //# Number of branches in population
int<lower=0> n[S]; //# Number of items per branch
int<lower=0> k[S]; //# Number of misstatements per branch
vector<lower=0>[S] Ns; //# Number of items in population per branch
vector[S] e; //# Number of FTEs per branch

}
parameters {
real mu;
real<lower=0> sigma;
vector[S] alpha_s;
real beta_e;

}

84



3.B. R code to reproduce results

model {
mu ⇠ logistic(0, 1);
sigma ⇠ normal(0, 1);
alpha_s ⇠ normal(0, 1);
beta_e ⇠ normal(0, 1);
k ⇠ binomial_logit(n, mu + sigma * alpha_s + beta_e * e);

}
generated quantities {
vector<lower=0, upper=1>[S] theta_s;
real<lower=0, upper=1> theta;
for (i in 1:S) {
theta_s[i] = inv_logit(mu + sigma * alpha_s[i] + beta_e * e[i]);

}
theta = dot_product(Ns, theta_s) / sum(Ns);

}

3.B.3 Example 2: Audit on legitimacy of subsidy payments

The R code below loads the population from the example concerning an audit on
legitimacy of subsidy payments.

library(rstan) # Install using install.packages("rstan")

standardize <- function(x) {
(x - mean(x)) / (sd(x) * 2) # Standardizes input to mean 0 and sd 0.5

}

# Read and standardize data
population <- read.csv("https://osf.io/vge5d/download")
population$d_std <- standardize(population$x1)
population$e_std <- standardize(population$x2)
sample <- population[population$insample == 1, ]

# Create variables of relevant data
n <- nrow(sample)
t <- (sample$bookValue - sample$auditValue) / sample$bookValue
d <- sample$d_std
e <- sample$e_std
N <- nrow(population)
D <- population$d_std
E <- population$e_std
t <- (t * (n - 1) + 0.5) / n

The model can be fitted to the data by filling in the model code and calling stan.

model_code <- "" # Fill in the code of the Stan model (see below)
fit <- stan(model_code, data = list(n = n, ...)) # See "data { }" for ...
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3.B.3.1 Including booking delay

data {
int<lower=0> n; //# Number of items in sample
real<lower=0> t[n]; //# Taints of items in sample
int N; //# Number of items in population
vector[n] d; //# Booking delay in sample
vector[N] D; //# Booking delay in population

}
parameters {
real beta_0;
real beta_d;
real<lower=0> nu;

}
model {
vector[n] phi_i;
beta_0 ⇠ logistic(0, 1);
beta_d ⇠ normal(0, 1);
nu ⇠ pareto(1, 1.5);
for (i in 1:n) {
phi_i[i] = inv_logit(beta_0 + beta_d * d[i]);
t[i] ⇠ beta(phi_i[i] * nu, (1 - phi_i[i]) * nu);

}
}
generated quantities {
vector[N] phi_i;
real phi;
for (i in 1:N) {

phi_i[i] = inv_logit(beta_0 + beta_d * D[i]);
}
phi = mean(phi_i);

}

3.B.3.2 Including number of FTEs

data {
int<lower=0> n; //# Number of items in sample
real<lower=0> t[n]; //# Taints of items in sample
int N; //# Number of items in population
vector[n] e; //# Number of FTEs in sample
vector[N] E; //# Number of FTEs in population

}
parameters {
real beta_0;
real beta_e;
real<lower=0>nu;

}
model {
vector[n] phi_i;
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beta_0 ⇠ logistic(0, 1);
beta_e ⇠ normal(0, 1);
nu ⇠ pareto(1, 1.5);
for (i in 1:n) {
phi_i[i] = inv_logit(beta_0 + beta_e * e[i]);
t[i] ⇠ beta(phi_i[i] * nu, (1 - phi_i[i]) * nu);

}
}
generated quantities {
vector[N] phi_i;
real phi;
for (i in 1:N) {

phi_i[i] = inv_logit(beta_0 + beta_e * E[i]);
}
phi = mean(phi_i);

}

3.B.3.3 Including booking delay and number of FTEs

data {
int<lower=0> n; //# Number of items in sample
real<lower=0> t[n]; //# Taints of items in sample
int N; //# Number of items in population
vector[n] d; //# Booking delay in sample
vector[n] e; //# Number of FTEs in sample
vector[N] D; //# Booking delay in population
vector[N] E; //# Number of FTEs in population

}
parameters {
real beta_0;
real beta_d;
real beta_e;
real<lower=0>nu;

}
model {
vector[n] phi_i;
beta_0 ⇠ logistic(0, 1);
beta_d ⇠ normal(0, 1);
beta_e ⇠ normal(0, 1);
nu ⇠ pareto(1, 1.5);
for (i in 1:n) {
phi_i[i] = inv_logit(beta_0 + beta_d * d[i] + beta_e * e[i]);
t[i] ⇠ beta(phi_i[i] * nu, (1 - phi_i[i]) * nu);

}
}
generated quantities {
vector[N] phi_i;
real phi;
for (i in 1:N) {
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phi_i[i] = inv_logit(beta_0 + beta_d * D[i] + beta_e * E[i]);
}
phi = mean(phi_i);

}

3.C Example report

Statistical model

The statistical model assumes that the misstatement of an item is a function of
the time between login and approval (a proxy for control intensity) of that item.

ki ⇠ Bernoulli(logit�1(�0 + �x · xi)

ki = Misstatement of item i
xi = Minutes between login and approval (a proxy for control intensity) of item i

Prior distributions for parameters

�0 ⇠ Logistic(0, 1)
�x ⇠ Normal(0, 1)

Graphical representation of the model

i = 1,...,n items
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Parameter estimates

95% HDI
Parameter Estimate Lower Upper

�0 -1.78 -3.18 -0.666
�x -0.954 -2.693 0.581

Population 0.142 0.035 0.311

Prior and posterior distribution
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Chapter 4

Quantifying Statistical Audit

Evidence using the Bayes Factor

Abstract

The impact of statistical methods on the audit practice is growing be-
cause of the increasing availability of audit data and the statistical methods
to analyze these data. A key aspect in the statistical approach to auditing
is assessing the strength of evidence for or against a hypothesis. Unfor-
tunately, the often-used frequentist statistical methods cannot provide the
statistical evidence that audit standards demand directly nor easily. In this
chapter we discuss an alternative approach that can provide this evidence:
Bayesian inference. Firstly, we explore the philosophical di↵erences between
frequentist and Bayesian inference. Secondly, we discuss misconceptions in
the interpretation of frequentist statistical evidence, and finally we discuss
how Bayesian inference allows the auditor to obtain and interpret statistical
evidence in line with audit standards via its alternative to the p-value, the
Bayes factor. We contribute to audit theory and practice by showing how
Bayesian inference can quantify audit evidence.

Keywords: Audit evidence, analytical procedures, Bayes factor, substantive
testing.

4.1 Introduction

In today’s society, auditors play a key role in preserving the integrity of compa-
nies, (non-profit) organizations, and governments. The objective of the auditor is
to provide stakeholders of the auditee with an opinion with reasonable assurance
about the completeness, accuracy, and fairness of the assertions as presented by the
auditee’s management in the financial statements (ISA 200, International Auditing

This chapter is under review for publication as Derks, K., de Swart, J., Wagenmakers, E.–J.,
& Wetzels, R. (2022). The Bayesian approach to audit evidence: Quantifying statistical evidence
using the Bayes factor. doi: https://doi.org/10.31234/osf.io/kzqp5
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and Assurance Standards Board (IAASB), 2018; AU-C 200, American Institute of
Certified Public Accountants (AICPA), 2021; AS 5, Public Company Accounting
Oversight Boards (PCAOB), 2020). To obtain this reasonable assurance, audi-
tors are expected to conduct an audit of the organization as prescribed by the
International Standards on Auditing (ISA International Auditing and Assurance
Standards Board (IAASB), 2018), Generally Accepted Auditing Standards (GAAS
American Institute of Certified Public Accountants (AICPA), 2021), or the Au-
diting Standards (AS Public Company Accounting Oversight Boards (PCAOB),
2020). These audit standards mandate that the auditor’s opinion must be based
on persuasive (rather than conclusive) audit evidence consisting of information
that can support or contradict management’s assertions in the financial state-
ments (ISA 500, paragraph 5c, International Auditing and Assurance Standards
Board (IAASB), 2018; AU-C 500, paragraph 6, American Institute of Certified
Public Accountants (AICPA), 2021; AS 1105, paragraph 2, American Institute
of Certified Public Accountants (AICPA), 2021). Unfortunately, the often-used
frequentist statistical methods cannot provide the statistical evidence that audit
standards demand directly nor easily. In this chapter we introduce an alternative
approach that can quantify this evidence in line with auditing standards: Bayesian
inference.

Two types of audit evidence can be distinguished: non-statistical and sta-
tistical. Non-statistical audit evidence is collected from supervision, inquiry, or
correspondence with the auditee (Bennett and Hatfield, 2013; Perry, 2011; Yin,
2020). Statistical audit evidence is collected from statistical procedures and anal-
yses performed by the auditor (Gillett and Srivastava, 2000; van den Acker, 2000).
For example, statistical evidence can be obtained by testing a subset of relevant
control systems to determine whether or not they meet quality requirements (Li
et al., 2020), by performing analytical procedures to assess relationships between
financial and non-financial data in the auditee’s databases (Appelbaum et al., 2018;
Daroca and Holder, 1985), or by performing audit sampling to obtain reasonable
assurance that auditee’s financial statements are free of material misstatement
(American Institute of Certified Public Accountants (AICPA), 2019; Dowling and
Leech, 2007).

Traditionally, a large part of statistical audit evidence was obtained from au-
dit sampling (Hirst and Koonce, 1996; Trompeter and Wright, 2010). However, in
recent decades, the emergence of big data, as well as the growing use of data ana-
lytics in the audit practice has brought new opportunities for the use of statistical
techniques other than audit sampling as an additional source of audit evidence
(Appelbaum et al., 2017). For example, regression analysis can be used to iden-
tify and evaluate trends in the balance of payments over time or to verify the
auditee’s financial data against an industry benchmark (Appelbaum et al., 2018;
Bednarek et al., 2016). However, regardless of the type of statistical analysis, the
auditor requires data to perform statistical inference on a certain characteristic of
the auditee.

Where statistical sampling is applied, probability theory is required (ISA 530,
paragraph 5g, International Auditing and Assurance Standards Board (IAASB),
2018). There are two main schools of probability theory: frequentist and Bayesian
(Wagenmakers et al., 2008). In current practice, frequentism is the dominant
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methodology to collect statistical audit evidence. Audit guides implicitly nudge
auditors towards a frequentist hypothesis testing framework to, for example, eval-
uate their samples using confidence intervals or p-values (American Institute of
Certified Public Accountants (AICPA), 2019; Stewart, 2012). However, frequen-
tism has several well-known drawbacks. Most importantly, a frequentist hypoth-
esis test does not give the auditor what the audit standards desire: statistical
evidence that can support or contradict the auditor’s conclusions. In particular
its main decision-making tool, the p-value, is not a measure of statistical evidence,
it strictly provides only indirect support against the conclusions made by the audi-
tor. Moreover, the p-value is ine↵ective at quantifying evidence that can support
the auditor’s conclusions, and it is ine�cient since monitoring evidence as the data
come in and stop gathering data when a certain evidential threshold is reached
(e.g., when the p-value is smaller than 0.05) is not allowed (Wagenmakers, 2007;
van Batenburg, 2018e). For these reasons, the frequentist methodology has raised
persistent concerns about e�ciency, transparency, and applicability to the audit
practice in the scientific literature (Beck et al., 1985; Hubbard and Lindsay, 2008;
Johnstone, 1986, 1990; Kim et al., 2018; Kinney, 1975; Scott, 1973). In Section 4.3,
we will go into more detail about the concerns of frequentist hypothesis testing
when it comes to auditors’ e↵ectiveness and e�ciency.

Both the frequentist and Bayesian approaches facilitate attribute sampling,
monetary unit sampling, estimation using confidence or credible intervals, and—
most importantly in an audit context—statistical hypothesis testing. Nonetheless,
the two approaches di↵er in their approach to hypothesis testing and therefore in
how the resulting statistical evidence can be interpreted. Most importantly, in a
frequentist approach the auditor samples data with the aim to falsify a certain null
hypothesis and ignores the likelihood of the data under an alternative hypothesis.
There is a disconnect between this approach and the auditing practice because
if the goal of the auditor is to quantify how much evidence the data provide for
or against the null hypothesis it is unavoidable that an alternative hypothesis is
specified (Goodman and Royall, 1988). On the other hand, in a Bayesian approach
the auditor samples data with the aim of obtaining relative evidence for two com-
peting hypotheses. The rationale is that there is evidence for the null hypothesis
over the alternative hypothesis if the data are more likely to occur under the null
hypothesis (and vice versa). Because a Bayesian approach considers the likelihood
of the data under two competing hypotheses, it is possible to directly compare
the relative evidence for the hypotheses. This allows auditors to obtain statistical
evidence that can support or contradict their conclusions, something that is often
desired but impossible using a frequentist or nonstatistical approach.

As an alternative to frequentist hypothesis testing, Bayesian hypothesis testing
allows the auditor to quantify statistical evidence using the Bayes factor (Kass and
Raftery, 1995). As mentioned, Bayesian hypothesis testing primarily focuses on
quantifying evidence, and it has therefore been advocated as a more informed
statistical framework, both for accounting research (Johnstone, 2021; Kim et al.,
2018) and for the audit practice (Johnstone, 2018; Stewart, 2013). A key aspect of
Bayesian inference is that the auditor needs to specify a so-called prior distribution.
The prior distribution represents the information about an unknown parameter of
interest to the auditor, which in turn is combined with the probability distribution
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of new data (e.g., the likelihood) to yield the posterior distribution. This updating
of information from the prior to the posterior distribution forms the basis of any
Bayesian inference.

Even though the audit is inherently a continuous process (Leslie, 1984), and
audit evidence is considered “cumulative in nature” (ISA 200, paragraph A30,
International Auditing and Assurance Standards Board (IAASB), 2018; AU-C
500, paragraph A3, American Institute of Certified Public Accountants (AICPA),
2021), the use of the Bayesian philosophy in the audit practice is scarce. This may,
in part, be explained by the fact that literature discussing the role of Bayesian
philosophy in the quantification of audit evidence is scarce. This is unfortunate
since the Bayesian philosophy has several properties that fit well with the audit
process. For example, in this chapter we show that the Bayes factor as a measure of
audit evidence fits the auditor well because it can quantify evidence for and against
hypotheses (Wagenmakers, 2007), it allows for sequential adding of information
(Rouder, 2014), and Bayesian analyses allow for incorporation of expert knowledge
or other existing information into the statistical analysis (Corless, 1972). For these
reasons, we believe that the Bayes factor has the potential to enhance the way that
auditors currently analyze and evaluate statistical evidence from a sample. While
not the first mention of the Bayes factor in an audit context (see Johnstone, 2018,
pp. 33–34), the main contributions of this chapter are to explain how the Bayes
factor enables the auditor to intuitively quantify audit evidence, to show how it
can be applied in practice using a variety of relevant examples, and to enable
practical use by supplying easy-to-use, free, and open-source software to calculate
the Bayes factor. In Section 4.3 we describe in detail how Bayesian hypothesis
testing using the Bayes factor addresses the concerns of frequentist hypothesis
testing when it comes to auditors’ e↵ectiveness and e�ciency.

The structure of this chapter is as follows. We will first provide a theoretical in-
troduction into statistical audit evidence. Next, we discuss and compare statistical
audit evidence from a frequentist and Bayesian point of view. We show that––in
contrast to the frequentist p-value––the Bayes factor can quantify evidence that
supports or contradicts the auditor’s conclusions regarding management’s asser-
tions in the financial statements. In the section thereafter we reason that the
p-value limits the auditor in their activities and that the Bayes factor does not
su↵er from these limitations. Finally, to illustrate how the auditor can quantify
evidence from a wide range of activities, we use the Bayes factor in a reanalysis of
four typical audit questions. The last section presents our concluding comments.

4.2 Two approaches to statistical audit evidence

Audit evidence is the subject of auditing standards ISA 500 (IAASB), AU-C 500
(AICPA) and AS 1105 (PCAOB). IAASB standard ISA 500 describes audit ev-
idence as “[i]nformation used by the auditor in arriving at the conclusions on
which the auditor’s opinion is based” (paragraph 5c) and states that audit evi-
dence “comprises both information that supports and corroborates management’s
assertions, and any information that contradicts such assertions” (paragraph A.1,
International Auditing and Assurance Standards Board (IAASB), 2018). AICPA
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standard AU-C 500 (paragraph 6) describes audit evidence as “[i]nformation used
by the auditor in arriving at the conclusions on which the auditor’s opinion is
based”. It also states that “Audit evidence is information to which audit pro-
cedures have been applied and consists of information that corroborates or con-
tradicts assertions in the financial statements” (American Institute of Certified
Public Accountants (AICPA), 2021). PCAOB standard AS 1105 (paragraph 2)
describes audit evidence as “all the information, whether obtained from audit pro-
cedures or other sources, that is used by the auditor in arriving at the conclusions
on which the auditor’s opinion is based” and states that “Audit evidence consists
of both information that supports and corroborates management’s assertions re-
garding the financial statements or internal control over financial reporting and
information that contradicts such assertions” (Public Company Accounting Over-
sight Boards (PCAOB), 2020). Unmistakably, the auditing standards desire that
audit evidence should be able to support or contradict the auditor’s conclusions
about management’s assertions in the financial statements.

For example, to obtain audit evidence to support or contradict the hypothesis
that the auditee’s recorded financial transactions do not contain misstatement that
exceeds materiality, an auditor can inspect a subset of all financial transactions
for their accuracy. However, because the auditor only inspects a subset of the
population a statistical hypothesis test is needed to assess the level in which the
evaluated subset of data supports or contradicts the auditor’s hypothesis about all
the data. To make concrete how the auditor can engage in statistical hypothesis
testing, we will focus on a specific activity in the audit where statistical inference
is common: audit sampling.

4.2.1 Hypothesis testing in audit sampling

Audit sampling enables the auditor to obtain evidence with respect to a specific hy-
pothesis about the misstatement in the population from which items are selected.
Because the auditor only inspects a sample of the population, the hypothesis can-
not be evaluated with absolute certainty. However, because the auditor is required
to obtain a reasonable assurance they must evaluate the hypothesis to a level of
certainty, and therefore it needs to be clear how much information is required
to reach this level. The audit standards prescribe that the information from a
sample is su�cient when it has reduced the sampling risk to an acceptably low
level (ISA 530, paragraph 5c, International Auditing and Assurance Standards
Board (IAASB), 2018; AU-C 530, paragraph 5, American Institute of Certified
Public Accountants (AICPA), 2021). There are two types of sampling risk that
can lead to an incorrect conclusion about the financial misstatements (Elliott and
Rogers, 1972). First, there is ↵: the risk of incorrectly deciding that the pop-
ulation contains material misstatement when in fact it does not (i.e., a Type-I
error or the risk of underreliance). Second, there is �: the risk of incorrectly de-
ciding that the population does not contain material misstatement when in fact
it does (i.e., a Type-II error or the risk of overreliance). According to the audit
standards, auditors are primarily concerned with reducing the second type of risk,
�, since it a↵ects e↵ectiveness and their ability to provide an appropriate audit
opinion. The ↵ risk is mentioned in the context of e�ciency as it “would usu-

97



4. Quantifying Statistical Audit Evidence using the Bayes Factor

ally lead to additional work to establish that initial conclusions were incorrect”
(ISA 500, paragraph 5c, International Auditing and Assurance Standards Board
(IAASB), 2018). For example, AICPA standard AU-C 200 states that “audit risk
does not include the risk that the auditor might express an opinion that the finan-
cial statements are materially misstated when they are not. This risk is ordinarily
insignificant” (AU-C 200, paragraph A7, American Institute of Certified Public
Accountants (AICPA), 2021).

If the auditor engages in statistical audit sampling, the audit standards state
that they can quantify the sampling risk (ISA 530, paragraph 5g, International
Auditing and Assurance Standards Board (IAASB), 2018; AU-C 530, paragraph
.05, American Institute of Certified Public Accountants (AICPA), 2021; AU 350,
paragraph .46, Public Company Accounting Oversight Boards (PCAOB), 2020).
However, when doing so the auditor is free to choose which philosophy of probabil-
ity is applied: a frequentist or a Bayesian philosophy. To illustrate the di↵erences
between these two philosophies, we will evaluate a running example of an hypoth-
esis test along the lines of both philosophies.

Suppose that an auditor is required to assess the financial statements of a
publicly traded company. The auditee’s financial statements incorporate, among
other accounts, a subsidy provided by the government to hire temporary sta↵
when necessary. In this example, a contract for temporary sta↵ is only legal when
it contains a valid signature. Furthermore, government norms mandate that for
the full subsidy to be legal, no more than three percent of the temporary contracts
can contain an invalid signature. Over the course of this year, the publicly traded
company has used the money from the subsidy to employ 500 sta↵ members on
the basis of such a temporary contract. In this case, the auditor investigates if
the subsidy provided to the company is fully legal. The auditor’s one-sided null
hypothesis stating that the misstatement in the temporary contracts does not
exceed three percent can be formulated as H0: ✓  0.03, whereas the one-sided
alternative hypothesis, which is the opposite of the null hypothesis, reads H1:
✓ > 0.03. In these hypotheses, ✓ represents the proportion of contracts with an
invalid signature. A di↵erent way of testing these hypotheses is to include the value
of the performance materiality in the alternative hypothesis, see Appendix 4.A for
further details.

However, since these contracts have not been subject to an audit before the
true value of ✓ is unknown. Therefore, the auditor would like to decide about
the credibility of the hypothesis H0 by selecting several temporary contracts and
determining the validity of the signature. Suppose that, after inspecting a sample
of 99 temporary contracts from the auditee’s archives, the auditor finds that none
of these contracts contain an invalid signature.

4.2.2 Frequentist null hypothesis testing

The traditional method of analyzing these sample outcomes to arrive at a conclu-
sion about ✓ is frequentist null hypothesis significance testing (NHST) (American
Institute of Certified Public Accountants (AICPA), 2019; Elliott and Rogers, 1972;
Stewart, 2012). In NHST, the auditor formalizes a so-called null hypothesis that
represents the minimal value of ✓ at which their alternative hypothesis is not
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supported (Fisher, 1934), which in our example is the hypothesis H0: ✓  0.03.
Unfortunately, NHST only allows for quantifying evidence against the null hy-
pothesis H0. This means that the auditor is unable to quantify evidence that can
support the null hypothesis and, furthermore, is unable to quantify evidence that
supports the alternative hypothesis if an alternative hypothesis is defined.

When testing the null hypothesis, the auditor assumes that H0 is true and sets
out to gather data to evaluate H0. The rationale behind NHST is that increasingly
stronger evidence will be obtained against H0 (the population is free of material
misstatement) when the data become increasingly implausible assuming the truth
ofH0. If su�cient evidence is obtained that contradictsH0, it can be rejected with
reasonable assurance. NHST allows the auditor to quantify the evidence against
H0 using the p-value, which expresses the probability of seeing the observed sample
outcome or more extreme––but unobserved––sample outcomes, assuming the truth
of H0.

To perform the statistical inference, the data from the sample needs to be
connected to the null hypothesis about the population parameter by means of
a probability distribution (Lehmann and Romano, 2006). For example, if the
auditor assumes that the contracts in the sample are all independent observations
and that the only parameter that exerts influence on the sample outcomes is the
probability of misstatement ✓, a binomial distribution can be applied (Johnstone,
1990; Sorensen, 1969), see Equation 4.2.1.

Probability of k errors in n items =

✓
n

k

◆
✓k(1� ✓)n�k (4.2.1)

To determine when H0: ✓  0.03 should be rejected for a given sample size
n, the auditor must calculate the maximum number of invalid signatures k that
can be observed while the risk of incorrectly rejecting the null hypothesis is still
su�ciently low. Suppose that the auditor has determined ↵—the risk of incorrectly
deciding that the population contains material misstatement when in fact it does
not—to be five percent. This threshold is referred to as the significance level. In
this case, the rule for rejection of H0 is k � 7 because if it is true that ✓ = 0.03,
then the probability of finding 7 or more invalid signatures in the sample of 99
items equals 2.98 percent (see Equation 4.2.1). This probability is lower than the
required significance level of 5 percent. Using a lower cuto↵, as in k = 6, violates
the required ↵ risk (i.e., 7.78 percent); using a higher cuto↵, as in k = 8, is less
e�cient because the ↵ risk is much lower than required (i.e., 1 percent). This
procedure for rejecting H0 can also be regarded as rejecting the null hypothesis
if the p-value associated with the observed value of k is less than or equal to the
significance level ↵.

To continue our running example, the p-value is the probability of finding k = 0
to k = 99 invalid signatures in the sample, given that the temporary contracts
contain three percent misstatement, and equals p = 1 (Equation 4.2.2). Since the
calculated p-value of 1 is higher than the significance level ↵ = 0.05, the auditor
cannot reject the null hypothesis.
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p =
k=99X

i=0

✓
99

k

◆
0.03k(1� 0.03)99�k = 1 (4.2.2)

A default conclusion for a p-value larger than the significance level ↵ is to
not reject—and thus maintain—the null hypothesis H0: ✓  0.03. However,
the interpretation of a larger p-value as support for the null hypothesis is flawed
(Goodman, 2008). The fallacy in this statement is best described through the
words “absence of evidence is not evidence of absence” (Altman and Bland, 1995;
Keysers et al., 2020). Simply put, the finding that data contain no evidence against
the null hypothesis does not imply that they contain evidence that supports the
null hypothesis. Since the p-value is solely a measure of evidence against the null
hypothesis, it fails to address the extent to which the sample provides support for
the null hypothesis. Thus, based on the p-value, auditors are unable to quantify
statistical evidence that can support their conclusion that the misstatement in the
population does not exceed the performance materiality.

On the other hand, a p-value lower than the significance level ↵ generally leads
the auditor to reject the null hypothesisH0: ✓  0.03, and to accept the alternative
hypothesis H1: ✓ > 0.03. However, as we have discussed, in NHST the p-value
only concerns the null hypothesisH0 and not an alternative hypothesis. Therefore,
if the auditor uses this procedure to substantiate their conclusion that the sample
supports the opposing hypothesis, H1, they fall into a statistical trap (Berger
and Sellke, 1987; Berkson, 1942; Wagenmakers, 2007). The (im)plausibility of
the alternative hypothesis is not considered in the computation of the p-value,
and since the computation of the p-value is solely based on the evaluation of the
data in light of the null hypothesis it provides only an indirect argument for the
alternative hypothesis. Thus, the p-value fails to address the extent to which the
sample supports the alternative hypothesis H1. Based on the p-value, the auditor
is unable to quantify statistical evidence that can support the conclusion that the
misstatement in the population exceeds the performance materiality. This also
implies that auditors are unable to statistically contradict the conclusion that the
misstatement in the population does not exceed the performance materiality.

As mentioned in the auditing standards, the auditor can also calculate the
sampling risk �—the risk of deciding that the population does not contain mate-
rial misstatement when in fact it does. In order to calculate � for an alternative
point hypothesis about the population misstatement, the auditor needs to make
an assumption about ✓. Suppose the auditor assumes that the population mis-
statement is equal to ✓ = 0.04, which is slightly higher than the performance
materiality. When assuming the truth of this hypothesis, the risk of failing to
reject the null hypothesis H0: ✓  0.03 is the probability of finding an outcome
that would yield a p-value above five percent (e.g., k = 7 misstatements would
give p < .05 and thus lead to rejection of H0). Hence, the sampling risk � can be
calculated as the probability of finding k = 0 to k = 6 invalid signatures in the
sample under the Binomial(k |n = 99, ✓ = 0.04) distribution and equals � = 0.90.
This calculation shows that, if the population truly contains misstatement slightly
higher than performance materiality, there is a 90 percent chance to incorrectly
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decide that the population does not contain material misstatements. The reason
that this is high is because the assumed population material misstatement is very
close to the upper bound of the null hypothesis. The sampling risk � would be
lower if the sample size would be higher, or if the assumed population material
misstatement would be higher.

Since the auditing standards state that audit evidence consists of information
that can support or contradict the auditor’s conclusions, the inability of the p-
value to provide support for the null and alternative hypothesis makes it arguably
unsuited for quantifying statistical evidence in an audit context. Unfortunately,
this applies to any (analytical or substantive) procedure in which the auditor
quantifies statistical audit evidence using the p-value. However, in the next section
we show that, by using a Bayesian hypothesis test, the auditor can quantify the
required statistical evidence via the Bayes factor.

4.2.3 Bayesian hypothesis testing

In contrast to NHST, where the auditor’s evidence is solely based on the model for
the null hypothesis H0, a Bayesian hypothesis test incorporates both hypotheses
H1: ✓ > 0.03 and H0: ✓  0.03 into the statistical procedure. The driving force
behind Bayesian inference is Bayes’ theorem (Je↵reys, 1939), which stipulates how
existing information about an event A can be updated using information from a
new event B (Equation 4.2.3).

p(A |B) = p(A)⇥
p(B |A)

p(B)
(4.2.3)

On a conceptual level, Bayes’ theorem embodies a fundamental principle in the
audit: the notion that audit evidence is “cumulative in nature” (ISA 200, para-
graph A.30, International Auditing and Assurance Standards Board (IAASB),
2018; AU-C 500, paragraph A3, American Institute of Certified Public Accoun-
tants (AICPA), 2021) and that the auditor can therefore aggregate audit evidence
over the audit.

In line with accumulating evidence, it is important to state the current level of
information before an analysis is performed. Hence, in the Bayesian framework, a
prior distribution needs to be defined for every aspect of the statistical model that
is to be estimated. The prior distribution is a probability distribution that repre-
sents the auditor’s existing information about the possible values of parameters or
hypotheses. In audit sampling, the prior distribution can be used to incorporate
existing evidence about the possible values of the misstatement ✓ into the sam-
pling procedure (Corless, 1972). For example, the auditor’s risk assessments on
the inherent risk and control risk are information that can be incorporated into
the prior distribution (Derks et al., 2021a; Stewart, 2013).

To use Bayes’ theorem for hypothesis testing, the auditor must also first quan-
tify their existing evidence about the plausibility of the two competing hypotheses
using so-called prior probabilities. The prior probability p(H0) incorporates the
auditor’s existing evidence about the probability of the null hypothesis H0 oc-
curring before seeing any information from a data sample. Vice versa, the prior
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probability p(H1) incorporates the auditor’s existing evidence about the proba-
bility of the alternative hypothesis H1. This makes it possible that information
for or against a given hypothesis is evaluated and incorporated prior to choosing
the sample to test. The ratio of prior probabilities is called the prior odds and
is an indication of the relative plausibility of the hypotheses before analyzing the
intended sample.

When performing an audit, new information y from a sample is observed and
the auditor aims to update the prior probability p(Hi) of the hypothesis Hi to
a posterior probability p(Hi | y). This is done via Bayes’ rule, which allows the
auditor to update their prior knowledge about the hypothesis p(Hi) with the
evidence that is contained in the data for or against this hypothesis p(y |Hi),
resulting in the posterior probability of this hypothesis (see Equation 4.2.4). Given
the cumulative nature of audit evidence described in the audit standards, this
philosophy of revising and aggregating evidence is more in line with the audit
practice than that of NHST.

p(Hi | y)| {z }
Posterior probability

= p(Hi)| {z }
Prior probability

⇥
p(y |Hi)

p(y)| {z }
Evidence

(4.2.4)

The posterior probability p(Hi | y) represents the probability that the hypoth-
esis Hi is true, conditioned on the existing (prior) information and the evidence
from the sample. For example, a posterior probability p(H0 | y) = 0.95 implies
that, given the existing audit evidence and the evidence in the sample, there is a
95 percent probability of correctly deciding that H0 is true. Hence, the posterior
probabilities can be intuitively related to the sampling risks ↵ and �. More con-
cretely, when accepting H0, the posterior probability p(H1 | y) can be interpreted
as the � risk. Vice versa, when rejecting H0 and accepting H1, the posterior
probability p(H0 | y) can be interpreted as the ↵ risk.

However, because the auditor is interested in comparing the evidence for two
hypotheses, they can employ Bayes’ theorem to obtain the ratio of posterior prob-
abilities for H0 and H1, the posterior odds. The posterior odds can be denoted
as the product of the prior odds and the relative evidence for the hypotheses (see
Equation 4.2.5).

p(H0 | y)

p(H1 | y)| {z }
Posterior odds

=
p(H0)

p(H1)| {z }
Prior odds

⇥
p(y |H0)

p(y |H1)| {z }
Relative evidence

(4.2.5)

Since the posterior odds depend on the prior odds as well as the information
from the sample, and because it can be very di�cult to define the prior odds,
it is common practice to quantify the relative evidence that the sample contains
using the ratio of evidence for the two hypotheses. This ratio is called the Bayes
factor, and it quantifies the change in prior to posterior odds brought about by
the data (Kass and Raftery, 1995). Compared to the p-value, the Bayes factor
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is a direct comparison of the evidence for both hypotheses on the sample (see
Equation 4.2.6).

BF01(y) =
p(y |H0)

p(y |H1)
(4.2.6)

Since the Bayes factor is a ratio, it can quantify evidence in both directions. It
is this specific property of the Bayes factor that fits well with the audit standards’
description of audit evidence because it enables the auditor to quantify evidence
that can support their hypotheses as well as evidence that can contradict their
hypotheses. For example, a Bayes factor in favor of H0 of 7 (BF01 = 7) indicates
that the sample outcomes are 7 times more likely to occur under the null hypothesis
H0 than under the alternative hypothesis H1. Furthermore, because BF10 =

1

BF01
= 1

7
, BF01 = 7 also indicates that the sample outcomes are 7 times less

likely to occur under the alternative hypothesis H1 than under the null hypothesis
H0. Because of the ease of interpretation of the Bayes factor, it is rapidly being
adopted in many areas of business and science such as Psychology (Heck et al.,
2022; Ly et al., 2016), Sociology (Bollen et al., 2012; Lynch and Bartlett, 2019),
and Economy (Cipriani et al., 2012; Richard and Vecer, 2021). Furthermore, Bayes
factor calculations have been made very easy in many standard situations such as
the (partial) correlation test (Wetzels and Wagenmakers, 2012), the t-test (Rouder
et al., 2009; Wetzels et al., 2009), or the ANOVA (Rouder et al., 2012; Wetzels
et al., 2012) and have been implemented in easy-to-use software such as JASP
(JASP Team, 2022; Love et al., 2019).

In a similar fashion to the p-value there exist only subjective decision rules for
what Bayes factor represents su�cient evidence since what may be considered con-
vincing evidence in a low-risk audit might not be considered as convincing evidence
in a high-risk audit. However, to aid practitioners in interpreting the Bayes factor,
a collection of labels has been proposed and reiterated in the scientific literature
(Je↵reys, 1961; Wetzels et al., 2011; van Doorn et al., 2021). Table 4.1 displays
these evidential thresholds, which auditors can use to interpret the strength of
evidence provided by the Bayes factor in practice. Because the Bayes factor is a
ratio BF01 = 7 implies moderate evidence in favor of the null hypothesis and at
the same time implies moderate evidence against the alternative hypothesis. In
similar fashion, BF01 = 20 implies strong evidence in favor of the null hypothesis
and at the same time strong evidence against the alternative hypothesis. Note
that, although p-values and Bayes factors mostly agree about which hypothesis
is supported by the data, they often disagree about the strength of this support
(Wetzels et al., 2011).

In sum, because the Bayes factor can quantify audit evidence in both directions
it is more in line with the philosophy of evidence described in the audit standards
than the p-value. However, the Bayes factor is not only an attractive alternative
to the p-value because of its intuitive theoretical interpretation, it also removes
some of the practical limitations that the p-value brings. In the next section we
describe these limitations of the p-value in more detail and explain why the Bayes
factor does not su↵er from these limitations. In Section 4.4 we will discuss four
practical examples of Bayes factor calculations in an audit context.
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Table 4.1: Bayes factor labels as proposed by Je↵reys (1961).

BF01 = 1

BF10
Strength of evidence

< 1

100
Extreme evidence for H1

1

100
�

1

30
Very strong evidence for H1

1

30
�

1

10
Strong evidence for H1

1

10
�

1

3
Moderate evidence for H1

1

3
� 1 Anecdotal evidence for H1

1 No evidence for H1 or H0

1� 3 Anecdotal evidence for H0

3� 10 Moderate evidence for H0

10� 30 Strong evidence for H0

30� 100 Very strong evidence for H0

> 100 Extreme evidence for H0

4.3 Practical implications

In this section we illustrate that the use of the p-value limits auditors in their
e↵ectiveness and in their e�ciency in quantifying audit evidence. Next, we show
that the Bayes factor does not su↵er from these limitations and that it is therefore
an attractive alternative to the p-value. To illustrate which improvements the
Bayes factor brings, we focus on two properties of the p-value that we believe have
practical implications for the auditor: the p-value cannot provide evidence for the
null hypothesis, and it does not allow for sequential sampling (Wasserstein and
Lazar, 2016; Rouder, 2014; Wagenmakers, 2007; Wagenmakers et al., 2019). We
explain why the Bayes factor does not su↵er from these limitations and what this
implies for the auditor in practice.

4.3.1 The p-value cannot provide evidence for the null

hypothesis

The p-value can lead to an ine↵ective audit when the auditor wishes to support the
null hypothesis, but due to the nature of frequentist hypothesis testing they are
unable to obtain statistical evidence that quantifies this support. This limits the
auditor because it takes away many possibilities for statistical analyses in which a
null hypothesis is the focus of the investigation. The Bayes factor does not su↵er
from this limitation because it allows the auditor to quantify evidence in both
directions, thereby enabling the auditor to obtain evidence for the null hypothesis
if desired.

One can think of many scenarios (other than the sampling scenario in the
previous section) where supporting the null hypothesis is the main goal of the
statistical analysis, as doing so can contribute to the existing evidential matter in
the audit. Suppose that the auditor wants to support the null hypothesis that an
auditee’s inventory is valued fairly, wants to confirm the auditee’s accounts receiv-
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able or wants to confirm the auditee’s sales transactions. As we have discussed in
Section 4.2, relying on the p-value makes supporting this null hypothesis impos-
sible. This can be appreciated by noting that p = .35 will not be strong evidence
for the null hypothesis when the sample size is small (i.e., absence of evidence),
but the same p-value will be strong evidence for the same hypothesis when the
sample size is large (i.e., evidence of absence). To illustrate, a sample of 14 items
containing 1 misstatement and a sample of 284 items containing 10 misstatements
both yield p = .35. Hence, it is not possible to gather evidence supporting the null
hypothesis based on the p-value. In Section 4 we discuss two more examples in
which the auditor wants to support the null hypothesis: a situation in which the
auditor wants to support the conclusion that the data in the auditee’s financial
statements are subject to Benford’s law (Example 2) and a situation where an au-
ditor of a tax authority wants to support the conclusion that all taxable persons
are treated equally (Example 4). We show in more detail how in these commonly
occurring scenarios the p-value does not fit well with the audit question at hand
because it is unable to quantify support for the null hypothesis.

However, by reporting a Bayes factor the auditor can quantify evidence directly
in favor of the null hypothesis, thereby removing this limitation and providing a
more fitting answer to their question. In a Bayesian approach the auditor can make
a statement about how much more likely the data are under the null hypothesis
versus the alternative hypothesis. This makes it possible to directly compare the
evidence in the data for both hypotheses, thus allowing the auditor to support
or contradict their conclusion. Hence, the Bayesian approach to audit evidence
fits well with the audit question at hand because supporting a null hypothesis
can contribute just as much to the existing evidential matter as rejecting a null
hypothesis.

4.3.2 The p-value does not allow for sequential sampling

The p-value can lead to an ine�cient audit when the auditor already has enough
evidence to support a particular hypothesis, but due to the nature of frequentist
hypothesis testing they still need to perform the remainder of the planned work.
This limits the auditor in their e�ciency because at this point, they are performing
more work than necessary. The Bayes factor does not su↵er from this limitation
since it allows the auditor to monitor the evidence for any hypothesis while the
data come in (Rouder, 2014). Having access to such information during the audit
increases e�ciency for the auditor because it allows them to modify sampling
procedures at an early stage when necessary, or to stop sampling procedures when
su�cient evidence is obtained.

In a frequentist analysis, the auditor must complete data collection before
analyzing the sample results (Berger and Wolpert, 1988; Lindley, 1993). That is
because, given the sampling risk ↵, each time the auditor looks at the intermediate
results there is an ↵ percent chance that a significant p-value is produced when the
null hypothesis is true. As a result, the probability of incorrectly rejecting the null
hypothesis increases as a function of the number of times that the auditor looks
at the results (Armitage et al., 1969; Wagenmakers, 2007). Thus, to maintain
control over this type of sampling risk in the frequentist framework, the auditor
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must finish their intended sampling plan before analyzing the sample. In contrast,
because a Bayesian analysis is not dependent on a sampling plan, the auditor
is allowed to monitor the evidence for a particular hypothesis and to stop data
collection when enough evidence is obtained (Wagenmakers et al., 2019). From a
Bayesian point of view “It is entirely appropriate to collect data until a point has
been proven or disproven, or until the data collector runs out of time, money, or
patience.” (Edwards et al., 1963, p. 193).

To illustrate the benefits of sequential sampling, let’s consider the following ex-
ample. Suppose that the auditor wants to obtain evidence to support the assertion
that a certain population contains misstatements lower than a certain threshold
t. Statistically speaking, they can then define the null hypothesis as: H0: ✓ � t.
In this case, the auditor wants to sample until they can reject the null hypoth-
esis. They have planned a sample size such that—when no misstatements are
found—they can reject the null hypothesis that the population contains material
misstatement with a sampling risk ↵ of five percent. As it turns out, the sample
contains a single misstatement, which means that the auditor cannot reject this
null hypothesis. If the auditor still wants to be able to reject the null hypothesis
using the p-value, they will need to plan an extension for their sample. Because
there is an increase in the sampling risk ↵ after looking at the data, one possible
way to proceed is to plan a follow-up sample in which they adjust the maximum
p-value. However, this practice generally results in a substantial extension of the
sample. To make this concrete, in most audit guides it is prescribed that the
auditor inspects at least an additional number of items equal to the initial sample
(American Institute of Certified Public Accountants (AICPA), 2019, Appendix
B). For this case, that would imply an increase in the sample size from n = 99 to
at least n = 198.

In contrast, in the Bayesian framework the auditor is allowed to build upon
the information from the previous sample without penalty. Therefore, they can
coherently extend their sample from n = 99 to n = 156 (the sample size that they
would have got when initially planning for one misstatement in the sample), or
to any other n depending on the desired strength of evidence (i.e., the desired
Bayes factor). Other than being more e�cient in terms of the sample size, this
Bayesian sample size extension is arguably more intuitive and easier to explain for
the auditor than a frequentist one.

4.4 Applying the Bayes factor in a modern audit

To facilitate the use of the Bayes factor and illustrate the benefits of a Bayesian
approach to audit evidence, we will now apply the Bayes factor to four typical au-
dit questions. Please see Appendix 4.B for details about the derivations of various
statistics and the calculations of the Bayes factors in this section. As a first exam-
ple, we will reanalyze the audit sampling scenario in Section 4.2 from a Bayesian
point of view. In the second example, we will apply digit analysis using Benford’s
law to a financial data set. In the third example, we will analyze historical data
from an auditee’s sales revenue to uncover evidence that supports a potential sea-
sonal e↵ect. In the final example, we analyze an auditee’s classification algorithm
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to investigate to what degree the data reflect algorithmic fairness.

4.4.1 Example 1: Evaluating an audit sample

A Bayesian auditor starts their audit sampling procedure by first specifying a
prior probability distribution p(✓) that reflects their existing information about
the parameter ✓: the misstatement in the population. The two hypotheses H0:
✓  0.03 and H1: ✓ > 0.03 are defined as the range of the prior distribution that
corresponds to the hypotheses’ restrictions with respect to ✓. This means that the
prior probability for the hypothesis H0 corresponds to the total probability under
the prior distribution on ✓ in the range [0; 0.03]. Vice versa, the prior probability
for the hypothesis H1 corresponds to the total probability under the prior distri-
bution on ✓ in the range (0.03; 1]. To be able to compute the probability under
both hypotheses the auditor needs to define the prior probability distribution that
fits this situation.

If the auditor has assessed inherent risk and internal control risk according
to the Audit Risk Model, they can incorporate this information into the prior
distribution. For illustrative purposes it is convenient to specify a uniform Beta(1,
1) prior distribution that represents negligible information about the misstatement
✓ (Stewart, 2013). The auditor has assessed both inherent risk and internal control
risk as “medium” which, according to their audit guide, translates into a reduction
in the sample size of �n = 33. These unseen samples are assumed to be correct
and can be incorporated in the prior distribution by setting the � parameter of
the prior distribution to 1 +�n = 34 (Derks et al., 2021a; Steele, 1992). For the
Beta(↵ = 1, � = 34) distribution, the prior odds in favor of the hypothesis H0 are
0.645
0.355 = 1.817, see Figure 4.1.

p(H0) = 0.645

p(H1) = 0.355

0.00 0.25 0.50 0.75 1.00
θ

D
en

si
ty

Prior distribution

p(H0) = 0.983

p(H1) = 0.017

0.00 0.25 0.50 0.75 1.00
θ

D
en

si
ty

Posterior distribution

Figure 4.1: The Beta(1, 34) prior distribution (left panel) and Beta(1, 133) pos-
terior distribution (right panel) on the misstatement proportion ✓ after seeing a
sample of n = 99 items containing k = 0 misstatements. The prior and posterior
probabilities for H0 (light) and H1 (dark) induced by the prior and posterior dis-
tributions are shown in numbers.

After seeing the information from a sample of n items of which k contain a
misstatement, the prior distribution is updated by the binomial likelihood to a
posterior distribution p(✓ |n, k) according to Bayes’ theorem (see Equation 4.4.1).
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p(✓ |n, k)| {z }
Posterior

= p(✓)|{z}
Prior

⇥
p(k |n, ✓)

p(y = k, n)| {z }
Evidence

(4.4.1)

Similar to the prior distribution, the posterior distribution induces a probabil-
ity for the occurrence of the hypotheses. The posterior probability for the hypoth-
esis H0 corresponds to the probability mass assigned by the posterior distribution
to the values of ✓ in the range [0; 0.03]. Vice versa, the posterior probability for
the hypothesis H1 corresponds to the probability mass assigned by the posterior
distribution to the values of ✓ in the range (0.03; 1].

After being updated by the sample of n = 99 items of which k = 0 contain
a misstatement, the posterior distribution is the Beta(1 + 0 = 1, 34 + 99 = 133)
distribution. The posterior odds in favor of H0 induced by the posterior distri-
bution are therefore 0.983

0.017 = 57.824, see Figure 4.1. The posterior probability
p(H0 | y) = 0.983 implies that there is a 98.3 percent probability that the pop-
ulation does not contain misstatements that exceed the performance materiality.
This means that, when accepting H0, there is a 1.7 percent probability that the
auditor incorrectly judges that the population is free of material misstatement.
This probability is su�ciently low to find the statement in the null hypothesis
credible. Vice versa, this also implies that there is a 98.3 percent probability that
the auditor correctly judges that the population is not materially misstated.

Because we know the prior odds and the posterior odds, we can calculate the
Bayes factor by dividing the two. Thus, the Bayes factor in this example can be
calculated as BF01 = 57.824

1.817 ⇡ 31, which implies that the data are about 31 times
more likely to occur under H0 than under H1. This Bayes factor implies very
strong evidence in favor of H0 (see Table 4.1).

4.4.1.1 Comparison of frequentist and Bayesian conclusions

Note that a frequentist analysis (p = 1 > ↵) only facilitates a statement about
the (im)plausibility of the data (or data more extreme) under the hypothesis H0,
and forces the auditor to conclude that the null hypothesis cannot be rejected. As
mentioned in the previous section, using this p-value the auditor cannot say that
there is evidence in favor of the null hypothesis. The Bayes factor di↵ers from the
p-value in that it can quantify evidence directly in favor of the null hypothesis and
that it provides an intuitive interpretation of this evidence. That is, the Bayes
factor BF01 ⇡ 31 shows that H0 is many times more likely than H1 and that
there is strong evidence in favor of the null hypothesis that the misstatement in
the population does not exceed the performance materiality.

4.4.2 Example 2: Assessing Benford’s law

Benford’s law (Benford, 1938) has been advocated as a simple, (arguably) e↵ective
method for auditors to not only identify discrepancies in data, but to uncover
potential data manipulation in financial statements (Durtschi et al., 2004), ERP
systems (Ma’arif et al., 2020), or o�cial information released by authorities (Wei
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and Vellwock, 2020). Simply put, Benford’s law states that in many naturally
occurring collections of numbers the leading digit is likely to be small. More
concretely, a set of numbers is said to satisfy Benford’s law if the leading digit
d 2 {1, . . . , 9} occurs with probability

p(d) = log
10
(1 +

1

di
). (4.4.2)

Benford’s law is, among other applications, mentioned as an analytical proce-
dure in an early stage of the audit (Nigrini and Mittermaier, 1997). For example,
small deviations from Benford’s law may suggest that the data have passed a
reasonableness test, while large deviations may be a sign of possible data manipu-
lation or the need for further investigation (Drake and Nigrini, 2000). The goal of
the analysis in this example is to determine how much evidence the data provide
for the statement that the leading digits in the recorded values of a population of
items follow Benford’s law.

4.4.2.1 Data

The data for this example come from the financial statements of the Sino Forest
Corporation’s 2010 Report (Nigrini, 2012). For illustrative purposes, we will only
analyze the leading digits of the recorded values. The frequencies of the leading
digits in the sample are displayed in Table 4.2.

Table 4.2: Descriptive statistics for the first digits in the Sino Forest data set.

Leading digit Count Percentage Benford’s law
1 231 29.92% 30.1%
2 124 16.06% 17.61%
3 97 12.56% 12.49%
4 70 9.07% 9.69%
5 64 8.29% 7.92%
6 54 6.99% 6.69%
7 40 5.18% 5.8%
8 54 6.99% 5.12%
9 38 4.92% 4.58%

4.4.2.2 Frequentist analysis

In the NHST framework, the auditor wants to test the null hypothesis H0 that the
first digits are distributed according to Benford’s law. An example application of
this procedure is described by Varma and Khan (2012), who used Benford’s law
to identify potential fraud in a similar population. The hypothesis H0: pd =
log

10
(1 + 1

d ) is assessed by means of the p-value.
Using a Chi-squared test (X2 = 7.652, df = 8), the p-value for these data is

0.468. The interpretation of this p-value is: Assuming that the first digits are
distributed according to Benford’s law, there is a 46.8 percent probability that the
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auditor would have found the observed (or more extremely deviating) distribution
of first digits in the data set. In a standard fashion, the conclusion would be to
not reject, and thus maintain, the null hypothesis H0.

4.4.2.3 Bayesian analysis

In a Bayesian analysis of Benford’s Law (Good, 1967; Sarafoglou et al., 2021), the
null hypothesis is compared, by means of the Bayes factor, against the alternative
hypothesis which states that the first digits are not distributed according to Ben-
ford’s law (i.e., the digit probabilities are free to vary). The prior probabilities
for the hypotheses are set to be equal: p(H0) = p(H1) = 0.5. The prior distri-
bution for the alternative hypothesis is assumed to be a Dirichlet(↵1,↵2, . . . ,↵9)
distribution with all ↵ parameters set to 1. Note that, in this case, a parameter
↵d of the Dirichlet distribution reflects the prior count for the digit d and can be
adjusted to incorporate prior information into the alternative hypothesis.

The corresponding Bayes factor in favor of the null hypothesis is BF01 =
6899678, which implies that the data are 6899678 times more likely (extreme evi-
dence) to have occurred under the hypothesis that the first digits are distributed
according to Benford’s law than under the hypothesis that they are not. Because
the prior probabilities are set to be equal, the Bayes factor equals the posterior
odds, which implies that the posterior probability for the null hypothesis can be
deduced as p(H0 | y) = BF01⇥p(H0)

BF01⇥p(H0)+(1�p(H0))
= 0.999. This means that, when

accepting the null hypothesis H0, there is a 0.1 percent probability that the au-
ditor incorrectly accepts the null hypothesis. Vice versa, there is a 99.9 percent
probability that the auditor correctly accepts the null hypothesis.

4.4.2.4 Comparison of frequentist and Bayesian conclusions

The p-value of 0.468 leads the auditor to not reject the null hypothesis H0. Based
on this low p-value, the auditor cannot say the data contain evidence that supports
the conclusion that the auditee’s data follow Benford’s law. The Bayes factor
BF10 = 689978 facilitates the conclusion that the data contain extreme evidence
in favor of the conclusion that the auditee’s data follow Benford’s law.

4.4.3 Example 3: Uncovering seasonal patterns

We now turn to a situation where the auditor uses historical data in an analytical
procedure. In particular, the auditor is concerned with the question of how much
evidence there is that the sales of the auditee are influenced by seasonal factors.
For example, yearly sales revenues may be increasing, but revenues in June might
be lower than in September.

As part of the risk assessment process, the auditor can form expectations of
patterns that can reasonably be anticipated in the current audit. Often, these
expectations involve references to earlier years or industry benchmarks. For ex-
ample, the auditor may be interested in whether the sales of the auditee are subject
to seasonal e↵ects. In addition to a seasonality e↵ect, the auditor wants to know
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to what extent these historical data support a di↵erence in sales between each
season.

4.4.3.1 Data

The data for this example consist of monthly sales of the auditee over the course
of the years 2013–2016 (n = 48). These data are plotted over time and categorized
by season in Figure 4.2.
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Figure 4.2: Monthly sales of the auditee over the course of the years 2013–2016.
The left panel shows the sales over time, and the right panel shows the sales
categorized by season.

4.4.3.2 Frequentist analysis

In the frequentist analysis, the null hypothesis H0: µ1 = µ2 = µ3 = µ4 is assessed
via an ANOVA by means of the p-value. To get to know more about the spe-
cific seasons and to find out if they are significantly di↵erent, post-hoc tests are
performed and assessed using Tukey’s p-value, corrected for multiple testing.

Note that we apply ANOVA using a toy model as an illustrative example.
In practice, there will be other variables that may also hold predictive value for
the sales of the auditee. In all cases, the auditor must carefully construct their
statistical model, but can include additional variables using an ANCOVA or a
regression analysis.

We present the results of a frequentist ANOVA testing a main e↵ect for season
and post-hoc tests. The results of the ANOVA indicate a significant e↵ect for
season (R2 = 0.3042966, df = 3, F = 6.415, p < .01). The interpretation of this
p-value is: Assuming that there is no seasonal e↵ect, there is less than one percent
probability that the auditor would find the observed (or more extremely deviating)
outcomes in the data set. However, as we have shown, the auditor cannot deduce
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the strength of evidence for the statement that there is a seasonal e↵ect from
these p-values. Post-hoc tests also indicate a significant di↵erence (p < .01) in
the autumn months when compared to the other months, see Table 4.3. However,
when the auditor uses these p-values to substantiate this conclusion, they again
fall into the aforementioned statistical trap.

Table 4.3: ANOVA post-hoc comparisons for season.

Mean Di↵. SE t p tukey Prior Posterior BF10, U
Autumn Spring 30168.261 8876.126 3.399 0.008 0.414 16.053 38.755

Summer 33339.340 8876.126 3.756 0.003 0.414 41.542 100.291
Winter 31554.932 8876.126 3.555 0.005 0.414 1.775 4.285

Spring Summer 3171.079 8876.126 0.357 0.984 0.414 0.183 0.442
Winter 1386.672 8876.126 0.156 0.999 0.414 0.156 0.376

Summer Winter -1784.408 8876.126 -0.201 0.997 0.414 0.156 0.378
Note. P -value adjusted for comparing a family of 4. The posterior odds have
been corrected for multiple testing by fixing to 0.5 the prior probability that the
null hypothesis holds across all comparisons (Westfall et al., 1997). Individual
comparisons are based on the default t-test with a Cauchy(0, r = 1/

p
2) prior.

The “U” in the Bayes factor denotes that it is uncorrected.

4.4.3.3 Bayesian analysis

In a Bayesian analysis, the null model of no e↵ect is compared, by means of the
Bayes factor, against an alternative model which incorporates the season as a
predictive variable (Rouder et al., 2012; Wetzels et al., 2012). The post-hoc tests
will also be evaluated using the Bayes factor based on the default Bayesian t-test
(Rouder et al., 2009; Wetzels et al., 2009). In these post-hoc tests, the posterior
odds have been corrected for multiple testing by fixing the prior probability that
the null hypothesis holds across all comparisons to 0.5 (Westfall et al., 1997).

The Bayes factor for the model that includes a main e↵ect for season over
the model that does not is BF10 = 33.923. This Bayes factor implies that the
observed data are 33.923 times more likely to have occurred under the hypothesis
of a seasonal e↵ect than under the hypothesis of no seasonal e↵ect, which implies
strong evidence for a seasonal e↵ect (see Table 4.1). To answer the question
how much more likely it is that, for example, the autumn season di↵ers from
the other seasons, the auditor must inspect the Bayes factors BF10,U obtained
from the individual comparisons in Table 4.3. These Bayes factors indicate strong
evidence for the statement that the autumn season di↵ers from the spring and
winter seasons. However, the data contain only moderate evidence for a di↵erence
in the autumn months compared to the winter months.

4.4.3.4 Comparison of frequentist and Bayesian conclusions

The fact that p < .01 leads the auditor to reject the null hypothesis H0. However,
based on this low p-value the auditor cannot say there is evidence that supports
the conclusion that there is a seasonal e↵ect in the data. In contrast to the p-
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value, the auditor can use the Bayes factor of BF10 = 33.924 to substantiate the
conclusion that the data contain strong evidence in favor of a seasonal e↵ect.

4.4.4 Example 4: Determining algorithmic bias

As a final example, we consider an increasingly relevant issue in the context of
big data and artificial intelligence. With the rapid growth of information systems
that collect and mine customer data, an increasing portion of auditees’ business
decisions is being guided by artificial intelligence (AI). On 21 April 2021, the
European Commission presented a proposal for a regulation concerning artificial
intelligence—the AI Act, for short (European Commission, 2021). One major
focus of the AI Act is the classification of various types of AI systems according to
the risks involved. One of the risks that has special attention is that application of
AI might lead to unfair treatment and discrimination. Attention should therefore
be given towards ensuring that decisions made with the aid of these algorithms
remain fair (Kearns et al., 2018).

For example, such algorithms must avoid exhibiting discriminatory biases to-
wards features such as gender, race, or age. Suppose that the auditor works with
an auditee in the banking industry that employs an algorithm to predict whether
people are going to default on a loan. Naturally, it is highly undesirable that,
given that a customer is actually going to pay their loan, they are more likely to
get classified by the algorithm as possibly defaulting on that loan as a result of
their ethnicity. The following analytical procedure aims to test this algorithmic
fairness with respect to ethnicity.

To illustrate this procedure, we focus on a relatively simple criterion of algo-
rithmic fairness. This criterion requires equality of false positive or negative rates
across all subgroups in the data (Hardt et al., 2016). In the context of the example
algorithm, a false positive would imply that a person gets wrongly marked as a
possible defaulter. A false negative on the other hand would mean that a cus-
tomer will likely default on their loan, but no action will be taken by the bank as
this person is not identified by the algorithm. The algorithm may possibly display
racial bias if the probability that a customer gets wrongly marked as a possible de-
faulter is higher for some ethnic groups than for others. Statistically, this implies
that the probability of a false positive should be the same across ethnic groups
(i.e., the algorithm’s classification is independent of a customer’s ethnicity). To
find out how much evidence there is for this hypothesis, we describe one possible
analysis the auditor can use.

4.4.4.1 Data

We use a fictional benchmark data set (n = 10, 000) from the field of credit risk
prediction. The data contain information about a customer’s ethnicity, a target
variable that indicates defaulting behavior, and other financial information about
the customer. Suppose that the auditor has fitted the auditee’s predictive model to
this benchmark data set to obtain the confusion matrix in Table 4. They calculate
the false positive rate pi for each ethnicity i as the number of false positives divided
by the number of false positives plus the number of true negatives.
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Table 4.4: The confusion matrix obtained from the auditee’s classification algo-
rithm.

Predicted
Ethnicity Observed Defaulted Paid Total
Asian Paid 97 826 923

Defaulted 11 66 77
Total 108 892 1000

African Paid 167 1678 1845
Defaulted 12 143 155
Total 179 1821 2000

Hispanic Paid 195 1648 1843
Defaulted 17 140 157
Total 212 1788 2000

Caucasian Paid 477 4137 4614
Defaulted 55 331 386
Total 532 4468 5000

Total Paid 936 8289 9225
Defaulted 95 680 775
Total 1031 8969 10000

4.4.4.2 Frequentist analysis

In the frequentist analysis, the null hypothesis of independence H0: p1 = p2 =
p3 = p4 will be tested using a Chi-squared test and assessed by means of the
p-value.

The false positive rates for the categories p1, p2, p3 and p4 are 0.1051, 0.0911,
0.1058, and 0.1033. Using a Chi-squared test (X2 = 3.126, df = 3), the p-value is
0.373. The interpretation of this p-value is: Assuming that the false positive rate
is equal across all ethnic groups, there is a 37.3 percent probability of observing
these (or more extremely deviating) false positive rates.

4.4.4.3 Bayesian analysis

In the Bayesian analysis, the null hypothesis of independence will be tested against
the alternative hypothesis that the false positive rates are dependent on the sub-
group (Gunel and Dickey, 1974; Jamil et al., 2017). The prior distribution for the
alternative hypothesis is a Dirichlet(↵1,↵2,↵3,↵4) distribution with all ↵ param-
eters set to 1.

The Bayes factor in favor of H0 is BF01 = 11077.956, which implies that the
data are 11078 times more likely to have occurred under the hypothesis that the
false positive rates are equal across ethnic groups than under the hypothesis that
they are not. Using this Bayes factor, the auditor can quantify evidence in favor
of the null hypothesis and support the statement that the false positive rates are
equal across groups.
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4.4.4.4 Comparison of frequentist and Bayesian conclusions

The p-value of 0.373 leads the auditor to not reject the null hypothesis H0. How-
ever, based on this p-value, the auditor cannot say the data shows evidence that
supports the alternative hypothesis: the false positive rates are equal across eth-
nicities. In contrast to the p-value, the auditor can use the Bayes factor of
BF01 = 11077.956 to substantiate the conclusion that the data contain extreme
evidence in favor of equal false positive rates across ethnicities.

4.5 Concluding comments

From the perspective of an auditor, audit evidence plays a crucial role in providing
an opinion about whether the assertions presented by the auditee’s management
in the financial statements are credible. However, the frequentist method (NHST)
by which statistical audit evidence is currently often quantified in audits has raised
legitimate concerns over the years. In this chapter, we have emphasized the fact
that a frequentist hypothesis test does not produce the type of evidence that the
audit standards demand, and that the p-value does not fit well with the nature
of audit questions. We have shown that a Bayesian hypothesis test can produce
a more fitting type of evidence for the auditor’s conclusions about the financial
statements, and that it does not su↵er from the same limitations as the p-value
when it comes to e↵ectiveness and e�ciency. Because the Bayes factor can quantify
evidence in both directions, the Bayesian approach to audit evidence is more in line
with the audit standards than that of a frequentist hypothesis test. We therefore
propose the Bayes factor as an addition to the auditor’s statistical toolbox. Since
the auditing standards explicitly call for evidence that can support or contradict
the auditor’s conclusions, we expect that the Bayes factor will enhance the way
that auditors are able to quantify and evaluate statistical evidence from a sample.

Moreover, Bayesian inference provides auditors the tools to aggregate audit
evidence, and therefore to statistically accumulate audit evidence over the course
of an audit. This makes the Bayes factor a good fit for today’s audit practice
because it can facilitate the growing use of complex data analytics by the auditor
and the auditee. As data will become more complex, and statistical analyses
will become more prevalent, the auditor will require an intuitive framework to
integrate, quantify, and interpret the information from these procedures. This will
be especially the case if they are to meet the constant demand for a more e�cient
audit. Since the Bayesian framework provides the flexibility to incorporate many
types of prior information into the statistical analysis, we believe that it will be
more useful for the auditor in the long term than the current frequentist methods.

Despite our arguments in favor of Bayesian hypothesis testing using the Bayes
factor, it is not always practical to use this approach in favor of a frequentist
hypothesis test. As discussed in Section 4.2, Bayes’ theorem utilizes prior infor-
mation in the form of the prior probabilities and the prior distribution on the
parameters to perform inference. This means that, to get to the Bayes factor in
practice, the auditor will have to think about how they incorporate their existing
information into the statistical model. This has as a consequence that sometimes,
a frequentist hypothesis test can be more beneficial to an auditor if translating
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prior information into Bayesian prior distributions is di�cult, expensive or time-
consuming. Although the Bayesian approach comes with advantages such as being
able to quantify evidence in favor and against the auditor’s conclusions or the abil-
ity to engage in sequential testing without penalty, the auditor needs to decide
whether they think that the benefits of the Bayesian approach outweigh the costs
of justifying that approach.

The sensitivity of the Bayes factor to the prior distribution is an avenue for
further research in this area. For Bayesian hypothesis testing, default prior dis-
tributions exist and have been evaluated in a wide variety of designs and settings
(Rouder et al., 2009; Wetzels and Wagenmakers, 2012; Wetzels et al., 2012). How-
ever, no default prior distribution exists or has been evaluated specifically in the
context of audit sampling. Moreover, it remains to be investigated how auditors
use and interpret Bayesian evidence in practice, and if it increases the ease of
interpretation of statistical results for auditors.

The examples shown in this chapter show a selection of data-rich audit scenar-
ios that the Bayes factor can be applied in, but in principle any statistical analysis
can be performed in a Bayesian fashion. Most Bayesian analyses are easily ac-
cessible in a standardized format through open-source software packages such as
R (R Core Team, 2022) or graphical user interfaces such as JASP (JASP Team,
2022). We have performed all statistical analyses in this chapter using JASP
and have included reproducible examples in Appendix 4.B. Our proposition for a
way forward is that next to their frequentist analyses auditors perform Bayesian
equivalents of these analyses to become acquainted with these techniques, and to
be able to compare the two measures of evidence (p-values and Bayes factors) in
practice.

To conclude, we advocate the use of Bayesian inference in the audit because it
fits well with the goals of the auditor. First, the Bayes factor embodies the audit
standards’ description of audit evidence and provides the auditor with a measure
of statistical evidence that can support or contradict their conclusions. Second,
the theoretical foundations underlying the Bayesian framework have long been
argued to be beneficial for the audit, since they enable the auditor to quantify
and aggregate evidence over the audit using the prior and posterior probabilities.
In sum, Bayesian inference provides a fitting answer to the problems that today’s
auditors face.
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4.A Two approaches to NHST in audit sampling

There are two approaches to frequentist null hypothesis significance testing (NHST)
in audit sampling: the positive approach and the negative approach (Roberts,
1975). The key di↵erence between the positive and the negative approach comes
down to how the hypothesis of tolerable misstatement is defined, that is, whether
the hypothesis of tolerable misstatement includes the value of the performance
materiality or not. It can be demonstrated that the two approaches are equivalent
(Roberts, 1978, p. 45).

In the positive approach, the value of the performance materiality is seen as
the maximum tolerable misstatement. Hence, in this approach the hypothesis of
tolerable misstatement includes the value of the performance materiality. This null
hypothesis is encapsulated by the statistical scenario where ✓  0.03, whereas the
alternative hypothesis of intolerable misstatement is encapsulated by the scenario
where ✓ > 0.03. Because in NHST the auditor assumes that the null hypothesis
is true, the positive approach implies a philosophy of auditing where the auditor
accepts the population as not materially misstated unless there is evidence to the
contrary. The sampling risks ↵ and � are those defined in the chapter: ↵ is the risk
of incorrectly deciding that the population contains material misstatement when
in fact it does not (i.e., a Type-I error) and � is the risk of incorrectly deciding
that the population does not contain material misstatement when in fact it does
(i.e., a Type-II error).

In the negative approach, the value of the performance materiality is seen as
the minimum intolerable misstatement. Hence, in this approach the hypothesis
of tolerable misstatement does not include the value of the performance material-
ity. This alternative hypothesis is encapsulated by the statistical scenario where
✓ < 0.03, whereas the null hypothesis of intolerable misstatement is encapsulated
by the scenario where ✓ � 0.03. Because in NHST the auditor assumes that
the null hypothesis is true, the negative approach implies a philosophy of auditing
where the auditor rejects the population as being materially misstated unless there
is evidence to the contrary. As is the case for the null and alternative hypotheses,
the interpretation of the sampling risks ↵ and � is reversed in this approach: ↵
is the risk of incorrectly deciding that the population does not contain material
misstatement when in fact it does (i.e., a Type-I error) and � is the risk of incor-
rectly deciding that the population contains material misstatement when in fact
it does not (i.e., a Type-II error).

In the chapter accompanying this appendix, we have focused on the posi-
tive approach to NHST in audit sampling for two reasons. First, the text of
the auditing standards directly links to the positive approach. For example, the
definition of performance materiality is given as: “Performance materiality is de-
termined to reduce to an appropriately low level the probability that the aggregate
of uncorrected and undetected misstatements in the financial statements exceeds
materiality for the financial statements as a whole” (ISA 320, paragraph A.13,
International Auditing and Assurance Standards Board (IAASB), 2018). Further-
more, the definition of tolerable misstatement (i.e., the application of performance
materiality to a particular sampling procedure) is given as: “A monetary amount
set by the auditor in respect of which the auditor seeks to obtain an appropriate
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level of assurance that the monetary amount set by the auditor is not exceeded by
the actual misstatement in the population” (ISA 530, paragraph 5i, International
Auditing and Assurance Standards Board (IAASB), 2018; AU-C 530, paragraph
5, American Institute of Certified Public Accountants (AICPA), 2021). These
texts highlight the intention of the auditor to assert whether the actual misstate-
ment (i.e., ✓) does not exceed (i.e., ) the performance materiality or tolerable
misstatement (i.e., 0.03). The fact that ✓ must not exceed the performance ma-
teriality implies that the value of the performance materiality is included in the
hypothesis of tolerable misstatement (i.e., ✓  0.03). A second argument for the
positive approach is that this approach is prominent in the auditing literature, see
for example Elliott and Rogers (1972), Johnstone (1994), Martel-Escobar et al.
(2018), and Edmonds et al. (2019).

However, there are also several arguments to be made in favor of the negative
approach. First, in hypothesis testing, the probability of incorrectly rejecting the
null hypothesis is generally considered to be more important and is therefore re-
ferred to as primary risk, Type-I error, ↵, or audit risk. This preference for the ↵
risk as the conceptualization of audit risk is consistent with the negative approach
described above. In an audit context, the negative approach can be seen as a form
of ‘guilty-until-proven-innocent’, where ‘guilty’ means: the financial statements
contain material misstatement. Thus, in the negative approach the auditor audits
the financial statements from a conservative point of view. A second argument for
the negative approach is that the standard sample size tables in American Insti-
tute of Certified Public Accountants (AICPA) (2019, Appendix A and Appendix
C) can only be replicated using this approach. Hence, because practitioners may
be more familiar with the negative approach to NHST, we describe the calcula-
tions underlying the running example from the chapter in the remainder of this
appendix.

To determine when H0: ✓ � 0.03 should be rejected for a given sample size,
the auditor must calculate the maximum number of invalid signatures that can be
observed while the risk of incorrectly rejecting the null hypothesis is still su�ciently
low. Suppose that the auditor has determined ↵—the risk of incorrectly deciding
that the population does not contain material misstatement when in fact it does—
to be five percent. In this case, the rule for rejection of H0 is k = 0 because if it is
true that ✓ = 0.03, then the probability of finding 0 invalid signatures in the sample
of 99 items equals 4.99 percent (see Equation 4.A.1). Using a higher threshold, as
in k = 1, would violate this sampling risk since the probability of finding 1 or less
invalid signatures is 19.91 percent. As described in the chapter, this procedure for
rejecting H0 can also be regarded as rejecting the null hypothesis if the p-value
associated with the observed value of k is less than or equal to the significance
level ↵.

Let’s revisit the running example in which a sample of 99 items was selected
and no misstatements were found. In this case, the p-value is the probability of
finding k = 0 invalid signatures in the sample, given that the temporary contracts
contain three percent misstatement, and equals p = 0.049 (Equation 4.A.1). Since
the calculated p-value of 0.049 is lower than the significance level ↵ = 0.05, the
auditor can reject the null hypothesis.
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p =

✓
99

0

◆
0.030(1� 0.03)99�0 = 0.049 (4.A.1)

The auditor can also calculate the sampling risk �—the risk of deciding that
the population contains material misstatement when in fact it does not. Like in
the positive approach, to calculate � for an alternative point hypothesis about
the population misstatement, the auditor needs to make an assumption about
✓. Suppose the auditor assumes that the population misstatement is equal to
✓ = 0.02, which is slightly lower than the performance materiality. When assuming
the truth of this hypothesis, the risk of failing to reject the null hypothesis H0:
✓ � 0.03 is the probability of finding an outcome that would yield a p-value above
five percent (e.g., k = 1 misstatements would give p > .05 and thus lead the
auditor to not reject H0). Hence, the sampling risk � can be calculated as the
probability of finding k = 1 to k = 99 invalid signatures in the sample under the
Binomial(k |n = 99, ✓ = 0.02) distribution and equals � = 0.86.

From a Bayesian point of view, the two hypotheses H0: ✓ � 0.03 and H1:
✓ < 0.03 are defined as the range of the prior distribution that corresponds to the
hypotheses’ restrictions with respect to ✓. This means that the prior probability for
the hypothesis H0 corresponds to the total probability under the prior distribution
on ✓ in the range [0.03; 1]. Vice versa, the prior probability for the hypothesis H1

corresponds to the total probability under the prior distribution on ✓ in the range
[0; 0.03). Like in the chapter, the auditor chooses to specify a Beta(0, 34) prior
distribution for ✓.

After being updated by the sample of n = 99 items of which k = 0 contain an
error, the posterior distribution is the Beta(1+0 = 1, 34+99 = 133) distribution.
The posterior odds in favor of H1 induced by the posterior distribution are there-
fore 0.983

0.017 = 57.824. The posterior probability p(H1 | y) = 0.983 implies that there
is a 98.3 percent probability that the population does not contain misstatements
equal to or above the performance materiality. This means that, when accepting
H1, there is a 1.7 percent probability that the auditor incorrectly judges that the
population is free of material misstatement. This probability is su�ciently low
to find the statement in the alternative hypothesis credible. Vice versa, this also
implies that there is a 98.3 percent probability that the auditor correctly judges
that the population is not materially misstated.

Because we know the prior odds and the posterior odds, we can again calculate
the Bayes factor by dividing the two: BF10 = 57.824

1.817 ⇡ 31. This Bayes factor
implies that the data are about 31 times more likely to occur under H1 than
under H0.
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4.B Bayes factor calculations

4.B.1 Example 1: Evaluating an audit sample

4.B.1.1 Technical details

The observed misstatements in the sample, k, are assumed to be binomially dis-
tributed (Equation 4.B.1).

k ⇠ Binomial(n, ✓) (4.B.1)

The prior distribution for the misstatement parameter ✓ in H0: ✓ < 0.03 is
a conjugate Beta(1, 34) distribution truncated to the interval [0; 0.03] and the
prior distribution for the parameter ✓ in H1: ✓ > 0.03 is a conjugate Beta(1, 34)
distribution truncated to the interval [0.03; 1].

The evidence in the data for each hypothesis (i.e., the marginal likelihood) is
computed by multiplying the likelihood of the data (n = 99, k = 0) for each value
of ✓ with the probability of each value of ✓ under the prior distribution, and then
integrating this distribution over ✓. The Bayes factor is the ratio of the computed
marginal likelihoods. R code for computing these marginal likelihoods and the
corresponding Bayes factor is given below.

##########################################
# Example 1 - Evaluating an audit sample #
##########################################

library(jfa)
library(truncdist)

# Data
n <- 99 # Sample size
k <- 0 # Number of misstatements
materiality <- 0.03 # Performance materiality

# Prior parameters
alpha <- 1
beta <- 34

# Multiply the likelihood with the prior
integrandMin <- function(theta) {
likelihood <- dbinom(x = k, size = n, prob = theta)
prior <- dtrunc(x = theta, spec = "beta",

a = 0, b = materiality,
shape1 = alpha, shape2 = beta)

return(likelihood * prior)
}

integrandPlus <- function(theta) {
likelihood <- dbinom(x = k, size = n, prob = theta)
prior <- dtrunc(x = theta, spec = "beta",
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a = materiality, b = 1,
shape1 = alpha, shape2 = beta)

return(likelihood * prior)
}

# Integrate over theta
margLikMin <- integrate(f = integrandMin,

lower = 0, upper = materiality)$value
margLikPlus <- integrate(f = integrandPlus,

lower = materiality, upper = 1)$value

# Compute the Bayes factor
BF01 <- margLikMin / margLikPlus
BF01
# [1] 31.0765

# Alternatively, the "jfa" package can be used
evaluation(materiality = 0.03, n = 99, x = 0,

prior = auditPrior(method = "param", likelihood = "binomial",
alpha = 1, beta = 34))

# Bayesian Audit Sample Evaluation
#
# data: 0 and 99
# number of errors = 0, number of samples = 99, taint = 0, BF10 = 31.076
# alternative hypothesis: true misstatement rate is less than 0.03
# 95 percent credible interval:
# 0.00000000 0.02227252
# estimate:
# 0
# estimates obtained via method "binomial" + "prior"

4.B.1.2 Practical evaluations

This example can be reproduced in JASP via the Bayesian evaluation analysis in
the Audit module (Derks et al., 2021b). The interface of the Bayesian evaluation
analysis in JASP and the options required to reproduce this example are shown
in the figure at the bottom of this section. An example JASP file containing
the analysis and results is available in the online appendix at https://osf.io/
wtn9g/.

The Bayesian evaluation analysis allows the auditor to evaluate their sample on
the basis of summary statistics only, and it is therefore not required to load a data
set. After opening the analysis, the auditor can check the option ‘Performance
materiality’ and specify the performance materiality ✓max as 3 percent. In the
‘Prior’ section, the auditor can manually set the parameter of the prior distribution
to 34. Finally, the auditor can fill in the sample outcomes n = 99 and k = 0 as the
‘Sample size’ and the ‘Number of errors’ respectively. The results of the statistical
analysis are automatically computed.
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The first table in the output shows the sample size and number of found mis-
statements in the sample. By default, the total tainting (i.e., proportional error)
in the sample is shown alongside the most likely error in the population (i.e., the
mode of the posterior distribution), in this case 0. The fifth column in the ta-
ble displays the 95 percent upper credible bound (i.e., the 95th percentile of the
posterior distribution), in this case 0.022. The table also shows the Bayes factor
in favor of the hypothesis of tolerable misstatement. In this example, the Bayes
factor in favor of tolerable misstatement is BF�+ = 31.076. In the ‘Tables’ sec-
tion the auditor is able to request a table containing descriptive information of
the prior and posterior distribution by clicking ‘Prior and posterior’. Moreover, a
figure displaying the prior and posterior distribution can be displayed by clicking
the ‘Prior and posterior’ option in the ‘Plots’ section.

Figure 4.3: The interface of the Bayesian evaluation analysis in JASP and the
options required to reproduce the audit sampling example.

4.B.2 Example 2: Assessing Benford’s law

4.B.2.1 Technical details

The null hypothesis H0 implies an expected probability for all D = 9 digits d 2

{1, . . . , 9}. Specifically, the expected category proportion for digit d is:

c = log
10
(1 +

1

d
) = ✓1, ✓2, . . . , ✓9 (4.B.2)

= 0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046

The prior distribution for H1 is a Dirichlet(↵1, ↵2, . . ., ↵9) distribution with
all ↵ parameters set to 1. After seeing the observed counts xd of each digit d,
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the posterior distribution for H1 is a Dirichlet(↵1 + x1, ↵2 + x2, . . ., ↵9 + x9)
distribution.

The Bayes factor in favor of H0 can be obtained by calculating the Savage-
Dickey density ratio (Wagenmakers et al., 2010), that is, the height of the posterior
distribution p(✓ = c |x,H1) at the point of interest c divided by the height of the
prior distribution p(✓ = c |H1) at this point, see Equation 4.B.3 (Sarafoglou et al.,
2021). R code for computing this ratio is given below.

BF01 =
p(✓ = c |x,H1)

p(✓ = c |H1)
=

�(
PD

d=1 ↵d+xd)QD
d=1 �(

PD
d=1 ↵d)

QD
d=1

✓xd+↵d�1

d

�(
PD

d=1 ↵d)QD
d=1 �(↵d)

QD
d=1

✓↵d�1

d

=
6899678

1
(4.B.3)

#######################################
# Example 2 - Assessing Benford’s law #
#######################################

library(digitTests)

# Data
N <- 772
digits <- 1:9
p <- log10(1 + 1 / digits)
expected <- p * N
observed <- c(231, 124, 97, 70, 64, 54, 40, 54, 38)

# Prior parameters
alpha <- 1

# Logarithm of Eq. 4.A.3
lbeta.xa <- sum(lgamma(alpha + observed)) - lgamma(sum(alpha + observed))
lbeta.a <- sum(lgamma(rep(alpha, 9))) - lgamma(sum(rep(alpha, 9)))

# Compute the Bayes factor
logBF10 <- (lbeta.xa - lbeta.a) + (0 - sum(observed * log(p)))
BF01 <- 1 / exp(logBF10)
BF01
# [1] 6899678

# Alternatively, the "digitTests" package can be used
distr.btest(x = rep(digits, observed), BF10 = FALSE)

# Digit distribution test
#
# data: rep(digits, observed)
# n = 772, BF01 = 6899678
# alternative hypothesis: leading digit(s) are not distributed according
# to the benford distribution.

123



4. Quantifying Statistical Audit Evidence using the Bayes Factor

4.B.2.2 Practical evaluations

This example can be reproduced in JASP via the Benford’s law analysis in the
Audit module. The interface of the Benford’s law analysis in JASP and the op-
tions required to reproduce this example are shown in the figure at the bottom of
this section. An example JASP file containing the data, analysis, and results is
available in the online appendix at https://osf.io/wtn9g/.

After loading the data into JASP and opening the Benford’s law analysis, the
auditor can drag the variable that contains the numbers to be inspected (in the
example data this variable is named ‘value’) to the ‘Variable’ box in the interface.
The leading digits are automatically extracted from the data, and the results for
a test against Benford’s law are computed.

By default, the first table in the output shows the sample size (n = 772),
the Chi-squared statistic (X2 = 7.652), the degrees of freedom (df = 8), the p-
value (p = 0.468), and the Bayes factor in favor of the alternative hypothesis H1.
However, the Bayes factor in favor of the null hypothesis H0 can be requested by
changing the option ‘Bayes Factor’ in the interface from ‘BF10’ to ‘BF01’. This
results in the Bayes factor in favor of H0 shown in the chapter (BF01 = 6899678).
The second table in the output contains descriptive statistics regarding the leading
digits in the population. The table shows the observed percentage of each leading
digit versus the expected percentage under Benford’s law. For clarity, a figure
displaying these observed and expected percentages can be created by clicking the
option ‘Observed vs. expected’.

Figure 4.4: The interface of the Benford’s law analysis in JASP and the options
required to reproduce the Benford’s law example.
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4.B.3 Example 3: Uncovering seasonal patterns

4.B.3.1 Technical details

The model representing the null hypothesis is M0: y = µ + ✏. The model repre-
senting the alternative hypothesis is M1: y = µ+ �Xa↵ + ✏, where ↵ is a vector
of a e↵ects (one for each season), Xa is the design matrix with dimensionality
N ⇥ ↵ reflecting which season each observation falls into, and � is a scaling fac-
tor for the e↵ects. A Je↵reys’s prior is placed on the parameters µ and �2, see
Equation 4.B.4.

⇡(µ,�2) =
1

�2
(4.B.4)

Furthermore, the e↵ects are modeled as in Equation 4.B.5.

↵ | g ⇠ Normal(0, gIa), (4.B.5)

In Equation 4.B.5, g is the variance of the e↵ects and I is the identity matrix
of size a. The prior for g is specified as an inverse Chi-squared distribution with
shape parameter v = 1 and scale parameter ⌧2 = 0.25, see Equation 4.B.6.

g ⇠ Inverse-X2(1, 0.25) (4.B.6)

In a balanced design (n1 = n2 = n3 = n4), the Bayes factor between M1 and
M0 can be calculated using Equation 4.B.7 derived by Rouder et al. (2012). R
code for computing this integral is given below.

BF10 =

Z
1

0

(1 + gn)�(a�1)/2
⇥ (1�

R2

(1 + gn)/(gn)
)�(N�1)/2⇡(g)dg = 33.92343

(4.B.7)

############################################
# Example 3 - Uncovering seasonal patterns #
############################################

library(BayesFactor)
library(extraDistr)

# Data
N <- 48 # Total number of observations
a <- 4 # Number of seasons
n <- N / a # Number of observations per season
rsquared <- 0.30429656366968499 # R^2 of the model M1
rscale <- 0.5 # Sqrt of scale parameter for prior distribution on g

# Integral from Equation 12 in Rouder et al. (2012)
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integrand <- function(g) {
prior <- function(x, rscale) {
extraDistr::dinvchisq(x, nu = 1, tau = rscale^2)

}
p <- (1 + g*n)^(-(a-1)/2) *

(1 - (rsquared / ((1 + g*n)/(g*n))))^(-(N-1)/2)
prior <- prior(g, rscale)
return(p * prior)

}

# Compute the Bayes factor from the integral
BF10 <- integrate(integrand, lower = 0, upper = Inf)$value
BF10
# [1] 33.92343

# Alternatively, the "BayesFactor" package can be used
data <- read.csv("https://osf.io/we6hu/download",

stringsAsFactors = TRUE)
logBF10 <- anovaBF(formula = sales ⇠ Season, data = data,

rscaleFixed = rscale)@bayesFactor$bf
BF10 <- exp(logBF10)
BF10
# [1] 33.92343

4.B.3.2 Practical evaluations

This example can be reproduced in JASP via the Bayesian ANOVA analysis in
the ANOVA module. The interface of the Bayesian ANOVA analysis in JASP
and the options required to reproduce this example are shown in the figure at the
bottom of this section. An example JASP file containing the data, analysis, and
results is available in the online appendix at https://osf.io/wtn9g/.

After loading the data into JASP and opening this analysis, the auditor can
drag the outcome variable ‘sales’ to the ‘Dependent Variable’ box. Next, the
auditor can drag the grouping variable ‘Season’ to the ‘Fixed Factors’ box. The
results of the Bayesian ANOVA are automatically computed. Under the section
‘Post Hoc Tests’, the auditor can drag the ‘Season’ variable to the input box to
compute Bayes factors for a di↵erence between each pair of seasons.

The first table in the output shows the comparison of the two models under
consideration. The table displays the prior probability for each model p(M),
the posterior probability for each model p(M | data), and Bayes factor for the
alternative model versus the null model BF10 = 33.923. The post hoc comparisons
table shows the Bayes factors (BF10,U ) for the comparisons between each pair of
seasons.
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Figure 4.5: The interface of the Bayesian ANOVA in JASP and the options re-
quired to reproduce the seasonal patterns example.

4.B.4 Example 4: Determining algorithmic bias

4.B.4.1 Technical details

In this example, we follow a joint multinomial sampling scheme (Jamil et al.,
2017). The cell counts, yij , for the ith row and jth column of the contingency
table with dimensions R⇥C are assumed to be jointly multinomially distributed,
see Equation 4.B.8.

(yij , . . . , yRC) ⇠ Multinomial(yij , pij , . . . , pRC) (4.B.8)

The prior distribution on the multinomial parameters, p, is a conjugate Dirichlet
distribution with ↵ = 1, see Equation 4.B.9.

pij , . . . , pRC ⇠ Dirichlet(↵ij , . . . ,↵RC) (4.B.9)

The calculations for the Bayes factor in favor of independence under the joint
multinomial sampling scheme are discussed in Jamil et al. (2017), see Equa-
tion 4.B.10. R code for computing this Bayes factor is given below.

BF01 =
D(y⇤. + ⇠⇤.)

D(⇠⇤.)
⇥

D(y.⇤ + ⇠.⇤)

D(⇠.⇤)
⇥

D(↵⇤⇤)

D(y⇤⇤ + ↵⇤⇤)
= 11077.96 (4.B.10)

############################################
# Example 4 - Determining algorithmic bias #
############################################
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library(BayesFactor)
library(LearnBayes)

# Data
y <- matrix(c(97, 195, 167, 477,

826, 1648, 1678, 4137), nrow = 2, byrow = TRUE)

# Logarithm of Equation 8 in Jamil et al. (2017)
C <- ncol(y)
R <- nrow(y)

ystardot <- rowSums(y)
ydotstar <- colSums(y)
ydotdot <- sum(y)

alphastarstar <- matrix(1, nrow = 2, ncol = 4)
alphastardot <- rowSums(alphastarstar)
alphadotstar <- colSums(alphastarstar)
alphadotdot <- sum(alphastarstar)

xistardot <- alphastardot - (C - 1)
xidotstar <- alphadotstar - (R - 1)
xidotdot <- alphadotdot - (R - 1) * (C - 1)

ldirichlet <- function(a) {
sum(lgamma(a)) - lgamma(sum(a))

}

part1 <- ldirichlet(ystardot + xistardot) - ldirichlet(xistardot)
part2 <- ldirichlet(ydotstar + xidotstar) - ldirichlet(xidotstar)
part3 <- ldirichlet(alphastarstar) - ldirichlet(y + alphastarstar)

# Compute the Bayes factor
logBF01 <- part1 + part2 + part3
BF01 <- exp(logBF01)
BF01
# [1] 11077.96

# Alternatively, the "BayesFactor" package can be used
logBF10 <- contingencyTableBF(y, sampleType = "jointMulti",

priorConcentration = 1)@bayesFactor$bf
BF01 <- 1 / exp(logBF10)
BF01
# [1] 11077.96

# Another alternative is the "LearnBayes" package
BF10 <- ctable(y, alphastarstar)
BF01 <- 1 / BF10
BF01
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# [1] 11077.96

4.B.4.2 Practical evaluations

This example can be reproduced in JASP via the Bayesian contingency tables
analysis in the Frequencies module. The interface of the Bayesian contingency
tables analysis in JASP and the options required to reproduce this example are
shown in the figure at the bottom of this section. An example JASP file containing
the data, analysis, and results is available in the online appendix at https://osf.
io/wtn9g/.

After having loaded the data into JASP, the auditor is able to filter the data
such that all customers that are predicted to default (in this data set TARGET =
1) are removed from the data set. This way only the customers that are predicted
to have paid their loan remain in the data. After all, only these customers are
potentially subject to a false positive (incorrectly predicted to default). This filter
can be set by clicking the filter icon in the top left corner of the data and entering
the input shown in Figure 4.6.

Figure 4.6: The required input filter to remove the cases with TARGET = 1 in
this example.

After opening the Bayesian contingency tables analysis the auditor can drag the
predicted values in the variable ‘Predicted’ to the box for ‘Rows’, and the variable
‘Race’ containing the person’s ethnicity to the box for ‘Columns’. Under the
section ‘Statistics’ the auditor can set the ‘Sample’ option to ‘Joint multinomial’.
The results of the statistical analysis are automatically computed.

The first table in the output displays a two-by-four contingency table that
contains the observed counts in the data. By default, the second table in the output
shows the Bayes factor for a joint multinomial sampling plan, testing whether all
categories displayed in the rows and columns are independent of each other. The
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Bayes factor in favor of the null hypothesis H0 can be requested by changing the
option ‘Bayes Factor’ in the interface from ‘BF10’ to ‘BF01’. This results in a
Bayes factor in favor of H0 shown in the chapter (BF01 = 11077.956).

Figure 4.7: The interface of the Bayesian contingency tables analysis in JASP and
the options required to reproduce the algorithmic bias example.
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Chapter 5

An Impartial Bayesian Hypothesis

Test for Audit Sampling

Abstract

Auditors who perform audit sampling are often interested in obtaining
evidence for or against the hypothesis that the misstatement in a population
of items is lower than a critical limit, the so-called performance materiality.
Here, we propose to perform this hypothesis test using a Bayesian approach
that involves the use of an impartial prior distribution, assigning equal prior
probabilities to the competing interval hypotheses. Firstly, we argue that the
impartial prior distribution is sensible for auditors because it is easy to jus-
tify, interpret, and explain. Secondly, we show that Bayes factors computed
using this prior distribution have desirable statistical properties. Finally, we
compare these Bayes factors with traditional p-values in an audit sampling
context and elaborate on the merits of the impartial Bayesian hypothesis
test.

Keywords: Audit sampling, Bayes factor, impartial, evidence, prior distri-
bution.

5.1 Introduction

An audit is a final inspection of an organization’s financial statements with the
goal of providing stakeholders of the organization with reasonable assurance about
the accuracy and completeness of those statements. In many countries, audits are
mandatory for financial institutions, governments, and listed organizations. Since
business decisions are taken every day based on the auditor’s opinion, auditors
need to formulate their opinions based on audit evidence. Hence, the objective of

This chapter is under review for publication as Derks, K., de Swart, J., Wagenmakers,
E.–J., & Wetzels, R. (2022). An impartial Bayesian hypothesis test for audit sampling. doi:
https://doi.org/10.31234/osf.io/8nf3e
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an audit is to obtain evidence that can serve as a basis for an opinion about the
financial situation of an organization.

Despite the increasing availability of data and the associated advent of data-
driven methods, tests of details remain firmly entrenched as the dominant account-
ing practice for obtaining audit evidence. Traditionally, a large amount of audit
evidence was obtained from tests of details (Power, 1992), but in recent decades
the growing availability of data has shifted the focus towards obtaining audit ev-
idence from other analytical procedures (e.g., Appelbaum et al., 2017; Boersma
et al., 2020). However, adaptation of these ideas and technologies is only slowly
permeating the audit practice (Gepp et al., 2018), and many audit firms still use
some form of test of details to obtain audit evidence (Christensen et al., 2015).
Because inspecting all available data is time consuming and expensive, tests of
details often take place through audit sampling.

Audit sampling is defined as the application of audit procedures to a subset
of a population of items with the goal of performing inference on an unknown
characteristic of that population (ISA 530; International Auditing and Assurance
Standards Board (IAASB), 2018). For example, in a financial audit an auditor
may want to investigate a claim that a population of trade receivables contains
misstatements that do not exceed a certain critical limit, the so-called performance
materiality. To investigate this claim and make a statement about the true mis-
statement in the trade receivables account the auditor can inspect a representative
sample from this population of items. When the sample is planned, selected, and
evaluated using probability theory, this practice is referred to as statistical au-
dit sampling (ISA 530; International Auditing and Assurance Standards Board
(IAASB), 2018). In contrast to non–statistical sampling, statistical sampling is
supposed to enable the auditor to obtain statistical evidence to support or contra-
dict the claim that the misstatement in the population is below the performance
materiality.

To obtain statistical evidence for or against this claim the auditor can engage
in statistical hypothesis testing. Currently, the dominant framework of statisti-
cal hypothesis testing in the audit practice is p-value null-hypothesis significance
testing (NHST). Whereas NHST is commonly used, it cannot provide the auditor
with direct evidence to support their statements (Wagenmakers, 2007), nor does
it provide a good measure of the strength of the evidence that the sample provides
for their statements (Berger and Sellke, 1987; Berkson, 1942; Dyckman, 2016; Ed-
wards et al., 1963; Johnstone, 1994; Wagenmakers, 2007). We refer the reader to
Johnstone (2021) and the previous chapter for a comprehensible explanation of
this problem in the fields of accounting research and practice, respectively.

An alternative to p-value NHST is Bayesian hypothesis testing. A Bayesian
hypothesis test can provide the auditor with a direct assessment of the strength of
evidence for or against their hypothesis via the Bayes factor (e.g., Je↵reys, 1935,
1939; Kass and Raftery, 1995). In a Bayesian audit sampling procedure, the audi-
tor defines a so-called prior distribution which incorporates all existing information
about the misstatement in the population (Johnstone, 1990; Nichols and Baker,
1977). Applying this prior distribution confers two advantages to the auditor.
Firstly, incorporating existing information into the prior distribution means there
is more available information at the start of substantive testing, which generally
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allows for a more e�cient estimate of the population misstatement (Knoblett,
1970). Secondly, since the prior distribution partly determines the predictions
from the auditor’s hypothesis, the information in the prior distribution is incor-
porated directly into a hypothesis test. This allows for direct accumulation of
audit evidence, and thus a more transparent audit (Derks et al., 2021a). From a
Bayesian point of view, the degree to which the data in the sample support or con-
tradict the auditor’s hypothesis over an alternative hypothesis—quantified by the
Bayes factor—measures the evidence in the sample for or against this hypothesis.

Even though incorporating existing information can increase e�ciency and
transparency in substantive testing, there are cases in which an argument can be
made to include only a minimal amount of information in the statistical analysis.
For example, suppose that the auditor does not have any a priori information about
the misstatement in the population, or does not have the desire to incorporate pre-
existing information into the statistical analysis. For such cases, default Bayesian
hypothesis tests have been developed for many common statistical designs in which
the auditor is unable or unwilling to incorporate pre-existing information into the
analysis. For example, Rouder et al. (2009) developed a default Bayesian test for
t-tests, Wetzels and Wagenmakers (2012) developed a default test for correlations
and partial correlations, and Wetzels et al. (2012) developed a default Bayesian
hypothesis test for ANOVA designs. Auditors might like to be more e�cient and
incorporate pre-existing information into the statistical analysis, but at the same
time they might be fearful of being perceived as prejudiced. This means that
many auditors may be reluctant to adopt informed Bayesian hypothesis tests and
might prefer default Bayesian hypothesis tests instead. However, to the best of our
knowledge no default Bayesian hypothesis test exists that is specifically tailored
to the problems faced in an audit sampling context. In this chapter we propose a
default Bayesian hypothesis test for audit sampling to fill this gap.

This chapter is structured as follows. Firstly, we introduce the reader to
Bayesian statistics in an audit sampling context. Secondly, we illustrate the de-
pendency of the Bayes factor on the specification of the prior distribution. Next,
we propose a specific type of prior distribution as the basis for a default Bayesian
hypothesis test for audit sampling. We argue that this Bayesian hypothesis test is
an attractive statistical tool for auditors because it is consistent, easy to interpret,
and easy to explain. Finally, we discuss the merits and demerits of the default
Bayesian hypothesis test in an audit sampling context.

5.2 The Bayesian approach to statistical audit sampling

From a statistical point of view, the auditor wants to perform inference about
an unknown characteristic, ✓, that represents the misstatement in the popula-
tion, and test this characteristic against the performance materiality ✓max. In a
Bayesian setting, the auditor needs to specify a prior distribution for ✓ that incor-
porates their pre-existing information about the misstatement in the population.
After seeing a data sample, y, the information about ✓ in the prior distribution
is updated using Bayes’ rule (Equation 5.2.1), in which the symbol / means that
the expression to the left of this symbol equals the expression to the right of this
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symbol multiplied by a scaling factor.

p(✓ | y)| {z }
Posterior

/ l(y | ✓)| {z }
Likelihood

⇥ p(✓)|{z}
Prior

(5.2.1)

Bayes’ rule stipulates that, after seeing the sample, y, the prior distribution
p(✓) is updated to a posterior distribution p(✓ | y) according to how well its can-
didate values are consistent with the observed sample outcomes: the likelihood
l(y | ✓). In the next subsections we will elaborate on these three building blocks
of Bayesian inference: the prior distribution, the likelihood, and the posterior
distribution. We also discuss how in an audit sampling context the prior and pos-
terior distribution can be intuitively used to calculate a Bayes factor for or against
the hypothesis of (in)tolerable misstatement and illustrate this procedure in the
context of attributes sampling1.

5.2.1 The prior distribution

The prior distribution is a probability distribution that assigns a relative probabil-
ity to each of the candidate values of ✓, according to how likely that value is before
seeing any information from a sample. The prior distribution can be set freely,
but it can be convenient to choose the family of the prior distribution such that
the posterior distribution is in the same family (i.e., a conjugate prior). In the
context of attributes sampling, where items are evaluated as correct or incorrect,
the conjugate prior is the beta prior distribution because it remains a beta distri-
bution when updated by this type of data2. The probability density p(✓;↵,�) for
the beta distribution with parameters ↵, � is shown in Equation 5.2.2, in which
B(↵,�) is the beta function.

p(✓;↵,�) =
✓↵�1(1� ✓)��1

B(↵,�)
(5.2.2)

Using a prior distribution in tests of details can increase e�ciency since it
allows the auditor to incorporate various types of pre-existing information into
the statistical analysis. For example, information obtained from tests of internal
control systems can be incorporated into the prior distribution to reduce the re-
quired sample size, or to estimate the true misstatement in the population more
accurately. However, because the prior distribution is based on pre-existing in-
formation it is crucial that this information can also be justified by the auditor.
We refer the reader to Derks et al. (2021a) for a discussion of various methods
to incorporate and justify pre-existing audit information in the prior distribution.
However, in situations where there is no pre-existing information a noninformative
prior distribution is often preferred by the auditor.

1We have included an example for monetary unit sampling (MUS) using a gamma prior
distribution in Appendix 5.B.

2Note that the beta distribution can also be used for monetary unit sampling.
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A noninformative (sometimes called negligible) prior distribution is often de-
scribed as a prior distribution that incorporates no pre-existing information about
its candidate values in order “to let the data speak for themselves” (Gelman et al.,
2013, p. 51). In Bayesian literature there has been much debate about what it
means to incorporate no information, see for example Kerman (2011b, pp. 1453–
1455). A classic example of a noninformative prior distribution follows the prin-
ciple of indi↵erence, meaning that it assigns equal probability to all candidate
values of ✓ (Gelman et al., 2013, p. 31). Suppose that the auditor chooses to
specify the aforementioned Beta(↵, �) prior distribution for ✓. A common choice
of parameters that reflect negligible information is ↵, � = 1. Given these values of
the parameters, the prior distribution is a uniform distribution and can therefore
be considered indi↵erent with respect to the candidate values of the misstatement.
Hence, the assumptions underlying a Beta(1, 1) prior distribution are easy to ex-
plain for the auditor. The Beta(1, 1) prior distribution is displayed in Figure 5.1
(dashed line).

Mode: 0.02

95% Upper bound: 0.09

Mean: 0.038

0.00 0.25 0.50 0.75 1.00
θ

D
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ty

Prior

Posterior

Figure 5.1: The Beta(1, 1) prior distribution for ✓ (dashed line) and Beta(2, 50)
posterior distribution for ✓ (solid line). In the case of the Beta(1, 1) prior, the
posterior distribution for ✓ is equal to the likelihood function of ✓. The mode,
mean, and 95 percent upper bound of the posterior distribution are indicated.

5.2.2 The likelihood

The likelihood function summarizes the evidence in the data about the parameters
of the statistical model (Etz, 2018). More specifically, for each possible value of
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✓, the likelihood function l(y | ✓) measures the support provided by the data. In
attributes sampling, the possible sample outcomes consist of k misstatements in
n items. To explain how these possible sample outcomes relate to the population
misstatement ✓, the auditor must connect them using a probability distribution
(Lehmann and Romano, 2006). The observed sample outcomes of k misstatements
in n items are generally assumed to have been generated under a Binomial(k |n; ✓)
distribution, where the parameter ✓ represents the population misstatement rate
(Stewart, 2012).

Suppose that the auditor inspects a sample, y, of n = 50 items and finds
that k = 1 item contains a misstatement. To evaluate these sample outcomes
in the context of the prior distribution the auditor can calculate the likelihood
l(y | ✓), which quantifies how likely the sample outcomes are under each candidate
value of ✓. For the above mentioned sample outcomes, the likelihood function is
Binomial(k = 1 |n = 50; ✓) and is depicted in Figure 5.1. Since the likelihood
function is based solely on the sample outcomes k and n it has its maximum at
✓ = k

n = 0.02, i.e., the observed misstatement proportion in the sample.

5.2.3 The posterior distribution

Using Bayes’ rule, the information in the likelihood function can be used to update
the prior distribution to the posterior distribution, which consequently quantifies
the auditor’s updated prior information about ✓ after seeing the sample. Since the
posterior distribution is a probability distribution the auditor can formalize infor-
mation about ✓ via its mathematical properties. For example, they can calculate
location measures of the posterior distribution such as the mode that quantifies
the most likely misstatement in the population, or the mean that quantifies the
expected misstatement in the population. Moreover, they can calculate an x-
percent upper bound for ✓ that expresses the value that exceeds, with x-percent
probability, the misstatement in the population. Hence, the 95th percentile of the
posterior distribution ✓.95 can be interpreted as a 95 percent upper bound for the
population misstatement (Laws and O’Hagan, 2000; Neter and Godfrey, 1985).

Going back to the running example, the auditor updates their Beta(↵ = 1,
� = 1) prior distribution with the Binomial(k = 1 |n = 50; ✓) likelihood, resulting
in a Beta(↵ + k = 2, � + n � k = 50) posterior distribution. The mode of
the Beta(2, 50) posterior distribution is 0.02 and its mean is 0.038. The 95th
percentile of the posterior distribution is 0.09 meaning that, given the pre-existing
information and the information in the sample, there is a 95 percent probability
that the misstatement in the population is lower than 9 percent. The Beta(2, 50)
posterior distribution is shown in Figure 5.1 (solid line).

A Bayesian auditor will typically state that they are 95 percent certain a
population does not contain misstatements that exceed the performance materi-
ality when ✓.95 is lower than ✓max (Stewart, 2013). This statement made using
the posterior distribution is useful because it represents the auditor’s aggregated
knowledge about the misstatement ✓ over the course of the audit. However, from
the posterior distribution alone the auditor is unable to quantify the evidence in
the sample data for or against their claim. For this, the auditor needs to engage
in an hypothesis test (as discussed in Chapter 4).
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5.2.4 Bayesian hypothesis testing using the Bayes factor

A Bayesian hypothesis test involves a comparison of two competing hypotheses
about the population misstatement ✓. To test if ✓ is above or below the perfor-
mance materiality ✓max, the auditor generally formulates the hypothesis of toler-
able misstatement H�: ✓ < ✓max and the hypothesis of intolerable misstatement
H+: ✓ > ✓max. Note that these hypotheses correspond to a specific interval for ✓
and we have therefore denoted them as H� and H+ instead of H1 and H0 to avoid
confusion with a point null hypothesis. We leave the point null hypothesis out of
this procedure because from an audit perspective, the case in which ✓ = ✓max leads
to an indecisive situation: On the one hand, ✓max can be seen as the maximum
tolerable misstatement. On the other hand, ✓max can be seen as the minimum
intolerable misstatement. In Section 5.4 we show that in this indecisive situation
the Bayes factor will quantify this indecisiveness.

Formulating the two competing interval hypotheses H+ and H� allows the au-
ditor to evaluate each hypothesis individually in light of the observed data. Bayes’
rule for hypothesis testing (Equation 5.2.3) prescribes that each hypothesis Hi is
given a prior probability p(Hi) that represents the auditor’s pre-existing informa-
tion about the relative plausibility of the hypothesis before seeing the information
from the sample. After observing the sample, y, the prior probabilities are up-
dated to posterior probabilities p(Hi | y) according to how well the information in
the sample accords with each hypothesis: the marginal likelihood p(y |Hi). The
ratios of the prior and posterior probabilities are called the prior odds and pos-
terior odds, respectively. The Bayes factor is the change from the prior to the
posterior odds brought about by the information in the sample; hence the Bayes
factor measures the relative evidence in the sample for the hypothesis H� vis-a-vis
the hypothesis H+:

p(H� | y)

p(H+ | y)| {z }
Posterior odds

=
p(y |H�)

p(y |H+)| {z }
Relative evidence

⇥
p(H�)

p(H+)| {z }
Prior odds

. (5.2.3)

In an audit sampling context, the Bayes factor for H� or H+ can be intuitively
obtained from the prior and posterior distributions directly. Since the hypotheses
H� and H+ cover mutually exclusive ranges of the parameter space of ✓, it is
allowed for the hypothesis H�: ✓ < ✓max to be represented by the total probability
in the range [0, ✓max) of the prior and posterior distribution (Faulkenberry, 2019;
Klugkist et al., 2005; Morey and Rouder, 2011). Vice versa, the hypothesis H+:
✓ > ✓max can be represented by the total probability in the range (✓max, 1] of
the prior and posterior distribution. Hence, the prior and posterior distributions
for ✓ encompass the hypotheses H� and H+. Consequently, the Bayes factor
can be calculated by comparing the probabilities of H� and H+ under the prior
and posterior distribution, see Equation 5.2.4. Equation 5.2.4 highlights that the
Bayes factor is only dependent on the sample data y and the prior distribution
p(✓).
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BF�+(y) =
p(y |H�)

p(y |H+)
=

R ✓max

0
p(✓ | y)d✓/

R ✓max

0
p(✓)d✓

R
1

✓max
p(✓ | y)d✓/

R
1

✓max
p(✓)d✓

(5.2.4)

We continue the running example by calculating the Bayes factor for the sample
of n = 50 items with k = 1 misstatement using the Beta(1, 1) prior distribution.
Suppose the auditor has set the performance materiality ✓max to 3 percent. The
areas corresponding to the hypotheses H�: ✓ < 0.03 and H+: ✓ > 0.03 are shaded
for the Beta(1, 1) prior distribution in the left panel of Figure 5.2. The prior
probability of the hypothesis H� (light gray; 0.03) is the total probability in the
range [0, 0.03) under the prior distribution, whereas the prior probability of H+

(dark gray; 0.97) is the total probability in the range (0.03, 1]. The prior odds in

favor of H� are therefore p(H�)

p(H+)
= 0.03

0.97 = 0.0309, and p(H+)

p(H�)
= 32 1

3
in favor of H+.

After seeing the data from the sample, the posterior probability p(H� | y) =
0.455 is the total probability in the range [0, 0.03) under the posterior distribution,
and the posterior probability p(H+ | y) = 0.545 is the total probability in the
range (0.03, 1]. Hence, the posterior odds in favor of H� are 0.455

0.545 = 0.835.
The Bayes factor is the change from the prior odds to the posterior odds and is
BF�+ = 0.835

0.0309 = 27. This Bayes factor indicates to the auditor that their sample
of n = 50 items with k = 1 misstatement is 27 times more likely to be observed
under H� than under H+. According to guidelines proposed and reiterated in
the Bayesian literature (van Doorn et al., 2021; Je↵reys, 1961; Wetzels et al.,
2011), this Bayes factor implies strong evidence in favor of the hypothesis that the
misstatement in the population is lower than 3 percent (see Table 5.1).

Table 5.1: Bayes factor labels motivated by Je↵reys (1961).

Bayes factor Strength of evidence
1–3 Not worth more than a bare mention
3–10 Substantial
10–30 Strong

30–100 Very strong
> 100 Decisive

5.3 How the prior distribution influences the Bayes factor

Since the Bayes factor is heavily influenced by the prior distribution it is insightful
to show the e↵ect of the prior distribution on the Bayes factor. In this section we
discuss three types of prior distributions: a uniform Beta(1, 1) prior distribution,
an improper Beta(1, 0) prior distribution, and an impartial beta prior distribution.
Based on its assumptions and the behavior of its Bayes factors, we suggest that the
impartial prior distribution provides an attractive prior distribution for a default
Bayesian hypothesis test.
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5.3.1 Uniform prior: Beta(↵ = 1, � = 1)

The Beta(1, 1) prior distribution is a uniform prior distribution for ✓ in the range
[0, 1] (see Figure 5.1). Given the range of the prior distribution and the fact that
this prior distribution is flat, its median is 1

2
and its mode is undefined.

The Beta(1, 1) prior distribution is a popular choice of noninformative prior
distribution for audit sampling since it assigns equal probability to all candidate
values of the misstatement ✓ (Steele, 1992; Stewart, 2013). This prior distribution
exhibits indi↵erence towards the individual values of ✓ since it assumes that every
possible misstatement is equally likely before seeing the sample, which makes it
easy to explain for the auditor.

When it comes to hypothesis testing in an audit sampling context, the Beta(1,
1) prior distribution is not impartial with respect to the two competing interval
hypotheses H� and H+. As discussed in the previous section, for a performance
materiality ✓max = 0.03, the Beta(1, 1) prior distribution contains the information
that H+ is 32 1

3
times more plausible a priori than H�. Because in this case the

prior distribution strongly prefers H+, even a small data sample from a population
without material misstatement will greatly shift the support under the posterior
distribution from H+ to H�. This behavior results in a Bayes factor that does not
consistently quantify evidence for the hypothesis supported by the data. Instead,
Bayes factors calculated on the basis of a Beta(1, 1) prior distribution can quantify
evidence in favor of tolerable misstatement whereas the data show evidence in the
opposite direction. More specifically the auditor may find that, although the
sample contains misstatement (far) above the performance materiality, the Bayes
factor quantifies evidence in favor of the hypothesis of tolerable misstatement.

We illustrate the relationship between the observed misstatement and the
Bayes factor in the right panel of Figure 5.2, which shows the natural logarithmic
Bayes factors from the Beta(1, 1) prior distribution as a function of the sample
size, n, for various values of the observed misstatement ✓̂ = k

n . The panel shows
that, even though the auditor finds misstatement in the sample equal to (or above)
the performance materiality ✓max, under reasonable sample sizes the Bayes factor
quantifies evidence in favor of the hypothesis H� (i.e., ln(BF�+) > 0). However,
in the large sample limit, the Bayes factor from a Beta(1, 1) prior distribution
will quantify evidence in favor of the hypothesis supported by the data, except
when the observed misstatement ✓̂ is exactly equal to the performance materiality
✓max. In the case where ✓̂ = ✓max, the median of the posterior distribution will go
to ✓max as the sample size grows (see Appendix 5.A), which means the posterior

odds will go to 1. Hence, the Bayes factor will be equal to 1

p(H�)/p(H+)
= p(H+)

p(H�)
,

a constant that depends on the prior distribution. For example, for the Beta(1,
1) prior distribution, the Bayes factor will go to 0.97

0.03 = 32 1

3
(of which the natural

logarithm is 3.48, see Figure 5.2) if ✓̂ = ✓max = 0.03. This anchoring proofs that
the Bayes factor obtained from a Beta(1, 1) prior distribution overquantifies the
evidence in the data for H�, since in the large sample limit it indicates evidence
in favor of H� whereas the data contain inconclusive evidence.

In sum, even though the Beta(1, 1) prior distribution is indi↵erent with respect
to the values of ✓ and therefore easy to explain and justify, it is arguably unsuited
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Figure 5.2: The hypotheses are H�: ✓ < ✓max and H+: ✓ > ✓max, where ✓max has
the value 0.03. The left panel displays the Beta(1, 1) prior distribution in which
the area corresponding to H� (light) and the area corresponding to H+ (dark)
are indicated. The right panel shows natural logarithmic Bayes factors ln(BF�+)
as a function of sample size for five observed misstatement proportions ✓̂.

as a prior distribution for a default Bayesian hypothesis test for audit sampling
since the resulting Bayes factor does not consistently quantify evidence for the
hypothesis supported by the data. Clearly this is an undesirable situation for
auditors because, on first sight, the conclusions following their statistical analysis
may not match the data they use to substantiate these conclusions with. However,
this paradox is resolved by noting that the Beta(1, 1) prior distribution expresses a
strong preference for the hypotheses H+. It is therefore imperative that this prior
is only used if the auditor can justify the strong assumption that the hypothesis
of tolerable misstatement is highly likely before seeing a sample.

5.3.2 Improper prior: Beta(↵ = 1, � = 0)

The Beta(1, 0) prior distribution is a prior distribution for ✓ in the range [0, 1]
that is improper, meaning its set of candidate values for ✓ is not well defined.
Specifically, this prior distribution is the equivalent of an infinite point mass con-
centrated at ✓ = 1. Given its shape, the median and mode of this prior distribution
are both 1. Note that, even though the Beta(1, 0) prior distribution is improper,
the resulting posterior distribution is proper only if � > 0. This implies n�k > 0,
which means that there should be at least one non-misstated item in the sample.
If n � k = 0, meaning that all items in the sample are misstated, the posterior
distribution retains the shape of the prior distribution and is also improper.

The Beta(1, 0) prior distribution is a candidate for audit sampling because it
is the implicit prior distribution in NHST. Concretely, in a frequentist binomial
test the one-sided p-value (i.e., the probability of observing k misstatements or
less in a sample of n items given that the null model ✓ = ✓max is true) is equal
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to the probability that the misstatement ✓ exceeds the performance materiality
✓max under a Beta(1 + k, n � k) distribution (Stewart, 2012, p. 8). Since the
Beta(1 + k, n� k) distribution is the posterior distribution for ✓ resulting from a
Beta(1, 0) prior, the frequentist one-sided p-value can be interpreted as a Bayesian
posterior probability for H+ given the improper Beta(1, 0) prior distribution (see
Appendix 5.A). Hence, Bayesian planning and Bayesian evaluation of an audit
sample using the Beta(1, 0) prior distribution yields the same results with respect
to sample sizes and upper limits as NHST procedures (Mcbride and Ellis, 2001;
Pratt, 1965; Thatcher, 1964).

We illustrate this similarity between the p-value and the posterior probability
for H+ in the context of our running example, in which a sample of n = 50 and
k = 1 was observed. Using a binomial test to assess the null hypothesis H0:
✓ � 0.03, we obtain a one-sided p-value of 0.555. Using the improper Beta(1, 0)
prior distribution, the posterior distribution is a Beta(2, 49) distribution. The
probability for H+ under this posterior distribution is 0.555, which corresponds
to the one-sided p-value. Note that this connection implies that an improper3

prior distribution is (implicitly) the foundation of reference tables like those in
American Institute of Certified Public Accountants (AICPA) (2019, Appendix A
and Appendix C) and because of that it is commonly used by auditors in practice.
However, because the Beta(1, 0) distribution concentrates an infinite amount of
prior probability at ✓ = 1, it is the most conservative prior distribution possible.

The Beta(1, 0) prior distribution is easy to justify for the auditor because it
is the implicit prior distribution in NHST. However, there are three downsides
due to the Beta(1, 0) prior distribution being improper. Firstly, since in an audit
context it is crucial that the prior distribution can be explained by the auditor,
the fact that the prior distribution assumes all items in the population to be fully
misstated means that the auditor will have to justify this extremely conservative
and unrealistic assumption. Secondly, because the posterior distribution is only
proper if n� k > 0, this prior distribution can only be used if the sample contains
at least one non-misstated item. Thirdly, because the prior probabilities of the
competing interval hypotheses are undefined, this prior distribution leads to an
infinite Bayes factor for every outcome in which k is lower than n. Naturally,
this results in an undesirable situation for the auditor if they want to perform a
Bayesian hypothesis test. Therefore, the Beta(1, 0) prior is arguably unsuited as
a prior for a default Bayesian hypothesis test in an audit sampling context.

5.3.3 Impartial prior: Beta(↵ � 1, � > 1)

We propose an alternative prior distribution for ✓ that addresses the aforemen-
tioned problems of the Beta(1, 1) and Beta(1, 0) prior distributions with respect
to the Bayes factor. The proposed impartial prior distribution for ✓ in the range
[0, 1] has its median at the performance materiality ✓max and its mode at the ex-

3For American Institute of Certified Public Accountants (AICPA) (2019, Appendix A), the
corresponding prior distribution is a Beta(1, 0) distribution and for American Institute of Cer-
tified Public Accountants (AICPA) (2019, Appendix C), the corresponding prior distribution is
a Gamma(1, 0) distribution (Stewart, 2012, pp. 8–10).
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pected most likely misstatement ✓exp. Therefore, the shape of the impartial prior
distribution depends on these two parameters.

The impartial prior distribution is a candidate for audit sampling because it
assumes the auditor expresses no prior preference for H� or H+. Therefore, it can
be considered impartial with respect to the competing interval hypotheses (Berger
and Mortera, 1999; Casella and Berger, 1987). This makes the assumptions of the
prior distribution easy to explain and justify for the auditor. Furthermore, the
statistical motivation for assuming equal prior probabilities for H� and H+ (i.e.,
p(H�) = p(H+) =

1

2
) is that, under this condition, the constant that the Bayes

factor attains when ✓ = ✓max equals p(H+)

p(H�)
= 1. In other words, the Bayes factor

does not di↵erentiate between H� and H+ if both are equally supported by the
data.

We return to the running example by calculating the Bayes factor for the sam-
ple of n = 50 items with k = 1 misstatement using an impartial prior distribution.
Using the Beta(1, 22.757) prior distribution, which has its mode at 0 and its me-
dian at 0.03, and the sample outcomes n = 50 and k = 1 the impartial Bayes
factor in favor of H� is BF�+ = 1.822 (see Equation 5.4.1), implying that the
sample outcomes are about 2 times more likely to be observed under H� than
under H+ (anecdotal evidence). Note that the impartial Bayes factor is (much)
lower than the Bayes factor of 27 resulting from the Beta(1, 1) prior distribution
because the prior odds induced by the Beta(1, 1) prior distribution favored the
hypothesis H� much less to begin with. Also note that the Bayes factor resulting
from the Beta(1, 0) prior distribution is even larger, since it diverts to infinity for
every outcome in which k is lower than n.

In contrast to the Beta(1, 1) and Beta(1, 0) prior distributions, the impartial
prior distribution is a suitable prior distribution for a default Bayesian hypothesis
test for audit sampling because its assumptions are easy to explain and justify,
and the Bayes factor can be calculated for all binomial data. In the next section
we will explain how to calculate the impartial prior distribution and Bayes factor,
and investigate the behavior of the resulting impartial Bayesian hypothesis test.

5.4 An impartial Bayesian hypothesis test

In the previous section we have outlined why the impartial prior distribution is a
sensible prior that can be justified by the auditor. However, in order to propose
this prior as a basis for a default Bayesian hypothesis test we further investigate the
behavior of the impartial Bayes factor in this section. Firstly, we will describe how
to define the impartial prior distribution and how to calculate the corresponding
impartial Bayes factor. Secondly, we will discuss a desirable statistical property of
the impartial Bayes factor that describes its behavior: model selection consistency.

5.4.1 Calculating the impartial prior and Bayes factor

The impartial prior distribution assigns equal prior probabilities to the interval
hypotheses H� and H+ and therefore the median of the prior lies at the perfor-
mance materiality ✓max. Under this condition the mode of the prior distribution
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can be set freely to ✓exp 2 [0, ✓max). Here, the parameter ✓exp can be interpreted
as the auditor’s assessment of the expected most likely misstatement in the in-
tended sample; information that is generally available at the start of substantive
testing. In the next subsections, we discuss how to determine the parameters of
the impartial prior distribution and calculate the corresponding Bayes factor for
two scenarios: one where the auditor does not expect any misstatements in the
intended sample and one where the auditor does expect misstatements.

5.4.1.1 Zero expected most likely misstatement: Beta(↵ = 1, � > 1)

The assumption of no expected misstatements in the sample (i.e., ✓exp = 0) implies
that the mode of the prior distribution is zero. This condition restricts the ↵ and
� parameters of the beta prior distribution to ↵ = 1 and � > 1. Given these

restrictions, the median of the beta distribution can be expressed as 1 � 2�
1
�

(Kerman, 2011a). Therefore, setting the median of the prior distribution to the

performance materiality ✓max implies that � =
ln(

1
2 )

ln(1�✓max)
. Since for this prior

distribution the prior odds are 1, from Equation 5.2.4 it follows that the impartial
Bayes factor can be calculated as the ratio of posterior odds (Equation 5.4.1),
which is solely a function of the performance materiality ✓max and the sample
outcomes n and k.
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Figure 5.3: The hypotheses are H�: ✓ < ✓max and H+: ✓ > ✓max, where ✓max has
the value 0.03. The a priori most likely expected error ✓exp is 0. The left panel
displays the Beta(1, 22.757) prior distribution in which the area corresponding
to H� (light) and the area corresponding to H+ (dark) are indicated. The right
panel shows natural logarithmic Bayes factors ln(BF�+) as a function of sample
size for five observed misstatement proportions ✓̂.
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BF�+(✓max, n, k) =
p(y |H�)

p(y |H+)
=

R ✓max

0
p(✓; 1 + k, ln( 1

2
)/ln(1� ✓max) + n� k)d✓

R
1

✓max
p(✓; 1 + k, ln( 1

2
)/ln(1� ✓max) + n� k)d✓

(5.4.1)

To illustrate, for a performance materiality ✓max = 0.03 the � parameter of the
impartial beta prior distribution is � = 22.757. The left panel in Figure 5.3 shows
the Beta(1, 22.757) prior distribution, which has its mode at 0 and its median
at 0.03. Using the Beta(1, 22.757) prior distribution and the sample outcomes
n = 50 and k = 1 the impartial Bayes factor in favor of H� is BF�+ = 1.822.
The right panel of Figure 5.3 illustrates the behavior of this impartial Bayes factor
given various values of the observed misstatement ✓̂ = k

n . The panel shows that,

for any value ✓̂ 6= ✓max, the impartial Bayes factor consistently quantifies evidence
for the hypothesis that accords best with the data. Moreover, this evidence will
grow increasingly stronger as the sample size increases.

5.4.1.2 Non-zero expected most likely misstatement: Beta(↵ > 1,
� > 1)

The assumption of non-zero expected misstatements (i.e., ✓exp > 0) implies that
the mode of the prior distribution is greater than zero. This condition restricts
the ↵ and � parameters of the prior distribution to ↵ > 1 and � > 1. Given these
restrictions, the mode of the beta distribution can be expressed as ✓exp = ↵�1

↵+��2

and the median can be approximated as ✓max ⇡
↵� 1

3

↵+�� 2
3
(Kerman, 2011a). Thus,

the ↵ and � parameters of a beta distribution whose mode is equal to ✓exp and

whose median is equal to ✓max can be approximated4 by ↵ ⇡
3✓max�✓exp(4✓max+1)

3(✓max�✓exp)

and � ⇡
2+✓max(4✓exp�1)�5✓exp

3(✓max�✓exp)
.

To illustrate, for a performance materiality ✓max = 0.03 and an expected most
likely misstatement in the sample ✓exp = 0.015, the parameters of the impartial
prior distribution are ↵ = 1.641 and � = 43.105. The left panel in Figure 5.4
shows the Beta(1.641, 43.105) prior distribution, which has its mode at 0.015 and
its median at 0.03. After seeing the sample outcomes n = 50 and k = 1 the Bayes
factor is BF�+ = 1.668, implying that the sample outcomes are 1.668 times more
likely to have occurred under H� than under H+. The right panel of Figure 5.4
illustrates the behavior of this impartial Bayes factor given various values of the
observed misstatement ✓̂. Again, this panel shows that for any value ✓̂ 6= ✓max

the impartial Bayes factor consistently quantifies evidence for the hypothesis that
accords best with the data.

4Please see Appendix 5.A to this chapter for the derivations of these formulas. Note that
an iterative procedure, in which one determines � = ↵�1

✓exp�↵+2 and gradually increases ↵ > 1

until the median of the beta distribution is below ✓max, can be more accurate in determining the
parameters of the prior distribution under the assumption of expected misstatement. For this
reason, an iterative procedure has been used to calculate the parameters of this prior distribution.
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Figure 5.4: The hypotheses are H�: ✓ < ✓max and H+: ✓ > ✓max, where ✓max has
the value 0.03. The a priori most likely expected error ✓exp is 0.015. The left panel
displays the Beta(1.641, 43.105) prior distribution in which the area corresponding
to H� (light) and the area corresponding to H+ (dark) are indicated. The right
panel shows natural logarithmic Bayes factors ln(BF�+) as a function of sample
size for five observed misstatement proportions ✓̂.

5.4.2 Model selection consistency

Since one goal of this chapter is to develop a prior distribution that can be used
widely and easily by auditors in practice, we will discuss a statistical property of
the impartial Bayes factor that describes its consistent behavior: model selection
consistency (Ly et al., 2016; van Ravenzwaaij and Etz, 2021).

The property of model selection consistency implies that, for a sample gener-
ated from a model, the Bayes factor supporting that model should go to infinity
as the sample size goes to infinity. For example, for data sampled from a popula-
tion without material misstatement, the Bayes factor in favor of H� should grow
without bound if the number of samples increases. Concretely, for any sample
with ✓̂ < ✓max, the numerator in Equation 5.4.1 will approach one as the sample
size grows, its denominator will approach zero, which means that the impartial
Bayes factor will tend to infinity (Equation 5.4.2). Vice versa, for any sample with
✓̂ > ✓max, the numerator in Equation 5.4.1 will approach zero as the sample size
grows, its denominator will approach one, which means that the impartial Bayes
factor will go to zero (Equation 5.4.3). Hence, the impartial Bayes factor leads to
the correct decision whenever the sample size is large enough.

✓̂ < ✓max ) lim
n!1

BF�+ = 1 (5.4.2)

✓̂ > ✓max ) lim
n!1

BF�+ = 0 (5.4.3)

Furthermore, when data from a sample is observed but does not show evidence
to support either of the hypotheses the Bayes factor ought to be indi↵erent, i.e.,
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BF�+ = 1. In the case of ✓̂ = ✓max, the median of the posterior distribution
remains close to ✓max which implies equal posterior probabilities and—given the
equal prior probabilities—a Bayes factor of about 1 (Equation 5.4.4)5.

✓̂ = ✓max ) lim
n!1

BF�+ ⇡ 1 (5.4.4)

Considering that the impartial Bayes factor is model selection consistent and
indi↵erent in case the data supports none of the hypothesis, we believe that the
impartial prior is a sensible prior distribution for a default Bayesian hypothesis
test for audit sampling.

5.5 Comparison with p-value methodology

In the previous section we have shown that the impartial Bayes factor consistently
quantifies evidence for the hypothesis supported by the data. Moreover, we have
argued that the impartial prior distribution is easy to justify and explain in an
audit sampling context. With these properties in hand, auditors can obtain evi-
dence for or against the hypothesis of (in)tolerable misstatement without having
to spend time and e↵ort to justify the (e↵ect of the) prior distribution. However,
even though the impartial Bayes factor is easy to use, the auditor must be aware
of how it compares to the p-value NHST methodology that is currently often used
in the audit practice (i.e., is prescribed in audit guides like American Institute
of Certified Public Accountants (AICPA) (2019)). In this section we first discuss
two practical advantages of the impartial prior distribution compared to NHST
procedures. Next, we provide a detailed comparison of Bayes factors and p-values.

Firstly, since the impartial prior distribution is less conservative than the im-
plicit Beta(1, 0) prior distribution in NHST, using the impartial prior distribution
for planning an audit sample leads to a more e�cient sampling procedure. In
this case, more e�cient means that the same audit result can be achieved with a
smaller sample size. In Appendix 5.A we show that, if the auditor expects no mis-
statements in the sample, the relative sample size reduction compared to NHST

equals
ln(

1
2 )

ln(ACR)
. Here, ACR is the Audit Control Risk, the risk of incorrectly

rejecting the null hypothesis H0: ✓ � ✓max. To illustrate, at a confidence level of
95 percent, ACR equals 5 percent and, in the case of no expected misstatements, a

reduction of
ln(

1
2 )

ln(0.05) = 23 percent is achieved by using the impartial prior distribu-
tion when compared to planning a sample using the NHST approach. In Table 5.2
we provide a more detailed comparison of sample sizes in cases where misstate-
ments are expected. The table shows that, for larger values of the expected most
likely misstatement ✓exp, the absolute reduction in sample size increases but the
relative reduction in sample size decreases.

5In Appendix 5.A we show that the impartial Bayes factor gets increasingly close to 1 as the
sample size grows without bound. Note that ✓ is a continuous variable and therefore, in practice
✓̂ and ✓max will often not be exactly equal. As a consequence, while Equation 5.4.4 theoretically
holds true, in individual cases the Bayes factor will always keep meandering randomly as the
data come in (but on average the Bayes factor will be 1, see Wagenmakers et al. (2019) for more
details).
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Table 5.2: Comparison of required sample sizes for traditional NHST versus the
impartial prior distribution for various values of the expected most likely misstate-
ment ✓exp. The table shows outcomes for a performance materiality ✓max = 0.03
and a confidence level of 95 percent (i.e., ACR = 0.05).

✓exp nNHST nimpartial �n Relative reduction
0 99 76 23 23.23%
1

157
157 127 30 19.11%

2

208
208 174 34 16.35%

3

257
257 218 39 15.18%

4

303
303 262 41 13.53%

Secondly, using the impartial prior distribution for evaluating an audit sample
leads to a more e�cient use of information, meaning more audit evidence can
be obtained from the same sample. In Appendix 5.A we show that, for ✓̂ = 0,
the relationship between the one-sided p-value and the impartial Bayes factor
simplifies to BF�+ = 2�p

p . Therefore, if no misstatements are found in the sample,
the evidence against H+ obtained using the impartial Bayes factor is more than
the evidence against H0 indicated by the p-value. The relationship between the
p-value and the impartial Bayes factor approaches BF�+ = 1�p

p as ✓̂ = 1 and n
goes to infinity. From this, we conclude that the impartial Bayes factor can obtain
at least as much evidence as the one-sided p-value when the misstatement is high,
and more evidence when the misstatement is low.

To illustrate the relationship between the p-value of a one-sided null hypothesis
test and Bayes factors more clearly, we describe the results of a simulation study.
In this study we simulated 3000 audit samples with size n 2 {100, . . . , 500} and
observed misstatements, k 2 {0, . . . , n}, and compared the results with respect to
the observed misstatement ✓̂ = k

n , the one-sided p-value, and two Bayes factors:
one calculated using a Beta(1, 1) distribution and the other calculated using an
impartial prior distribution. In this simulation study, the performance materiality
was set to 3 percent, implying that p-values indicate evidence against the hypoth-
esis H0: ✓ � 0.03 and Bayes factors indicate evidence in favor of H�: ✓ < 0.03
over H+: ✓ > 0.03. In the subsections below we provide a detailed comparison
between the observed misstatement in the sample, the one-sided p-value, and the
two Bayes factors. In general, Bayes factors and p-values do not disagree about
the direction of the evidence in the data. However, the two measures are known to
disagree about the strength of the evidence in many cases (Wetzels et al., 2011).

5.5.1 Evaluating the relationship between the p-values and the

observed misstatement ✓̂

The relationship between the p-value and ✓̂ is shown as a scatter plot in Figure 5.5.
Each point corresponds to one of the 3000 simulated combinations of n and k. For
interpretation, the figure is divided into panels that distinguish di↵erent evidence
categories (Wetzels et al., 2011). The figure shows that the p-value is roughly in
line with the observed misstatement, as higher values of ✓̂ generally correspond to
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5. An Impartial Bayesian Hypothesis Test for Audit Sampling

higher p-values. However, note that p = 0.05 for a sample with 10 items should
provide more evidence against the null hypothesis than p = 0.05 for a sample with
100 items. Since identical p-values do not convey identical levels of evidence, the
p-value is a poor measure of statistical evidence (Lindley, 1957). Moreover, the
top left panel of Figure 5.5 points out that even for the larger simulated sample
sizes where ✓̂ is substantially lower than 0.03, H0 is still not rejected.

p−
va

lu
e

Evidence against H
0

Decisive
6.87%

Substantial
8.6%

Positive
10.2%

No
76.1%

0

0.001

0.01
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1
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0 0.015 0.03 0.045 0.06

<< Materiality
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< Materiality
23.6%

> Materiality
22.8%

>> Materiality
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Figure 5.5: The relationship between the observed misstatement and p-values
when testing the null hypothesis H0: ✓ � 0.03. Darker (blue) points correspond
to higher sample sizes. The scale of the axes is based on the decision categories
given in Wetzels et al. (2011).
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5.5. Comparison with p-value methodology

5.5.2 Evaluating the relationship between the observed

misstatement ✓̂ and the Bayes factor

The relationship between the observed misstatement ✓̂, the Beta(1, 1) Bayes factor,
and the impartial Bayes factor is shown in Figure 5.6. Like the comparison of p-
values and observed misstatement, both Bayes factors are closely in line with
the observed misstatement. For example, lower values of ✓̂ correspond to higher
values of BF�+, and higher values of ✓̂ corresponds to lower values of BF�+.
The di↵erence between the two Bayes factor approaches is in what they consider
to be inconclusive evidence. In the left panel it can be seen that Bayes factors
calculated using a Beta(1, 1) prior distribution quantify inconclusive evidence at
✓̂ > ✓max (the exact value depends on n), whereas impartial Bayes factors do so at
✓̂ = ✓max. This implies that, for data sampled from a population without material
misstatement, a uniform prior will always produce a larger Bayes factor than an
impartial prior.

θ̂

<< Materiality
29.8%

< Materiality
23.6%

> Materiality
22.8%

>> Materiality
23.8%

0 0.015 0.03 0.045 0.06
1/100000

1/100

1/30

1/10

1/3

1

3

10

30

100

100000

BF
−+

←
Evidence for H

−
Evidence for H

+
→

Anecdotal
7.57%

Anecdotal
5.67%

Moderate
12%

Moderate
4.77%

Strong
11.5%

Strong
2.6%

Very strong
11.8%

Very strong
1.8%

Decisive
28.1%

Decisive
3.23%

θ̂

<< Materiality
29.8%

< Materiality
23.6%

> Materiality
22.8%

>> Materiality
23.8%

0 0.015 0.03 0.045 0.06
1/100000

1/100

1/30

1/10

1/3

1

3

10

30

100

100000

BF
−+

←
Evidence for H

−
Evidence for H

+
→

Anecdotal
11.4%

Anecdotal
12.5%

Moderate
10.5%

Moderate
11.5%

Strong
7.63%

Strong
6.63%

Very strong
7.5%

Very strong
5.9%

Decisive
12.6%

Decisive
8.3%

Figure 5.6: The relationship between Bayes factors and the observed misstatement
when testing the hypothesis H�: ✓ < 0.03 versus the hypothesis H+: ✓ > 0.03.
The left panel shows Bayes factors using the Beta(1, 1) prior distribution and the
right panel shows Bayes factors using the Beta(1, 22.757) distribution. Darker
(blue) points correspond to higher sample sizes. The scale of the axes is based on
the decision categories given in Wetzels et al. (2011).

5.5.3 Evaluating the relationship between the p-value and the

Bayes factor

The frequentist NHST approach is still the dominant hypothesis testing framework
in audit sampling. Consequently, it is of interest to auditors who would like to
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apply this Bayes factor in practice to see which values of the impartial Bayes factor
compare to certain p-values.

To illustrate this relationship, we show the p-values, Beta(1, 1) Bayes factors,
and impartial Bayes factors calculated from the simulated data in Figure 5.7.
Note that the relationship between the p-value and the Bayes factor is much more
exact than the relationship between ✓max and the p-value and Bayes factors in
the previous comparisons. As discussed in the beginning of this section, if no
misstatements are expected and observed in the sample the relationship between
the p-value and the impartial Bayes factor can be expressed as BF�+ = 2�p

p . In
this case, a p-value of 0.1 corresponds to an impartial Bayes factor of 19 and a
p-value of 0.05 corresponds to an impartial Bayes factor of 39, whereas a p-value
of 0.01 corresponds to an impartial Bayes factor of 199. Note that, if the number
of (expected) misstatements in the sample increases, the relationship between the
one-sided p-value and the impartial Bayes factor approaches BF�+ = 1�p

p . In
these cases, p-values of 0.1 correspond to an impartial Bayes factor of 9 or 19, and
a p-value of 0.05 corresponds to an impartial Bayes factor of 19 or 39, whereas a
p-value of 0.01 corresponds to an impartial Bayes factor of 99 or 199.
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Figure 5.7: The relationship between Bayes factors testing the hypothesisH�: ✓ <
0.03 versus the hypothesis H+: ✓ > 0.03 and p-values testing the null hypothesis
H0: ✓ � 0.03. The left panel shows Bayes factors using the Beta(1, 1) prior
distribution and the right panel shows Bayes factors using the Beta(1, 22.757)
distribution. Darker (blue) points correspond to higher sample sizes. The scale of
the axes is based on the decision categories given in Wetzels et al. (2011).

This has practical implications for auditors who perform audit sampling. Com-
pared to the p-value, the impartial Bayes factor more quickly indicates that the
misstatement is below the performance materiality. For example, if in the fre-
quentist framework the null hypothesis would be rejected at p < .1, the same
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conclusion can be drawn with the impartial Bayes factor approach, but the de-
cision bound would be set to either 9 or 19 depending on the expectation of the
auditor. Likewise, an impartial BF�+ = 10 under the assumption of no expected
misstatement corresponds to p = 0.18. From this we conclude that the impartial
Bayes factor can yield similar decisions in planning and evaluation as the p-value
methodology, but only if the decision bounds are set to specific values.

5.6 Concluding comments

In this chapter we have shown how to calculate the Bayes factor in an audit
sampling context using the prior and posterior distribution directly. In sum, the
auditor can specify a prior distribution for the population misstatement, ✓, and
obtain the Bayes factor by calculating the ratio of prior-to-posterior odds induced
by the prior and posterior distribution. In this chapter we have also discussed that
auditors need to be aware of what a prior distribution implies about the prior odds,
and what its e↵ect is on the Bayes factor. We have proposed a default Bayesian
hypothesis test based on a prior distribution that is impartial with respect to
the hypotheses being tested and whose Bayes factors have desirable statistical
properties. Moreover, the assumptions underlying these prior distributions are
easy to explain and justify for auditors. Our main conclusion is therefore that the
proposed default Bayesian hypothesis test based on the impartial prior distribution
provides more suitable answers in audit sampling than the p-value or Bayes factors
computed with other noninformative prior distributions.

Hence, the impartial Bayes factor is an attractive statistical measure that can
be easily calculated given the performance materiality, the sample size, and the ob-
served misstatements. Its ease of calculation and justification makes the impartial
Bayes factor easy to apply for any auditor, for example to re-formulate the out-
comes of a frequentist sample from a Bayesian point of view. Another advantage
of the impartial prior distribution is that it increases the auditor’s e�ciency. We
have shown that using the impartial prior distribution allows the auditor to work
with smaller sample sizes when compared to commonly used alternatives such as
NHST. Moreover, because the impartial prior distribution requires input from the
auditor about the expected most likely misstatement ✓exp, it is also suitable as a
prior for a sensitivity analysis (Martel-Escobar et al., 2005). By computing the
Bayes factor under many plausible values of ✓exp, the auditor can assess the ro-
bustness of the impartial Bayes factor to the choice of ✓exp. Finally, given that
in the Bayesian framework the auditor can sequentially accumulate and monitor
evidence over time, the impartial prior can be an e�cient starting point for audit
sampling procedures in which the auditor can decide whether to stop sampling or
continue collecting more evidence at any point.

Nevertheless, we are aware that the auditor can select a variety of di↵erent
prior distributions to be impartial with respect to the hypotheses H� and H+.
For example, they might specify a Beta(1, 1) prior distribution truncated to the
range [0, ✓max⇥2] (symmetric on the real scale), or they might specify a localized
beta prior (Ly, 2018, Chapter 11) (symmetric on the log-odds scale), to assign
equal prior probabilities to the hypotheses. While there exists a plethora of viable

151



5. An Impartial Bayesian Hypothesis Test for Audit Sampling

options, we propose the impartial prior distribution because it is easy to use and
to justify and because it can incorporate relevant audit information. That is, the
impartial prior can be readily applied by any auditor without spending too much
time or e↵ort. This enables auditors to shift their focus away from quantifying
evidence and toward judging evidence, an activity that is arguably much more in
line with their area of expertise.

To make the proposed impartial prior distributions and Bayes factors easily
accessible for auditors, we provide benchmark tables like those in American Insti-
tute of Certified Public Accountants (AICPA) (2019, Appendix A and Appendix
C) in Appendix 5.C. These tables contain impartial Bayes factors for the binomial
likelihood for some possible combinations of the sample size, n, and the observed
misstatements, k, for a hypothesized maximum misstatement ✓max = 0.01, 0.05,
and 0.1, and zero expected misstatements. We propose that such tables can ac-
company the standard sample size and upper limit tables to give the auditor an
indication of the strength of evidence in their samples. Note that the provided
tables contain only a subset of the possible Bayes factors and only those for the
binomial likelihood, but that they can be easily extended using the formulas pro-
vided in this chapter and the appendix. Moreover, we have made these Bayes
factor calculations available in the R package ‘jfa’ (Derks, 2022) and in the Audit
module (Derks et al., 2021b) of the open-source statistical software program JASP
(JASP Team, 2022; Love et al., 2019). Appendix 5.D demonstrates how to obtain
the impartial Bayes factor in these software implementations.

As a final note we like to emphasize that the purpose of the proposed prior
distributions is to be impartial with respect to the hypotheses of (in)tolerable
misstatement, and consequently obtain Bayes factors that exhibit desirable traits.
However, we encourage the auditor to use informed prior distributions when per-
forming Bayesian audit sampling, and to use the impartial Bayes factor mostly as
a benchmark procedure in the case no information about the hypotheses is avail-
able, if it is costly or di�cult to come up with an informed prior distribution, or
if the auditor genuinely has pre-existing information that corresponds to impar-
tiality with respect to the hypotheses. Given this application, the impartial Bayes
factor can potentially serve as an entry-level Bayesian measure of evidence for
auditors unfamiliar to Bayesian inference, and as a more advanced tool to assess
the quality and robustness of evidence for auditors who are familiar with it.
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5.A. Derivations

5.A Derivations

5.A.1 Equivalence p-value and posterior probability H+ under

the Beta(1 + k, n� k) posterior

In a binomial test, the one-sided p-value for the hypothesis H0: ✓ � ✓max is
equal to the posterior probability for H+: ✓ > ✓max given a Beta(1, 0) prior
distribution. The one-sided p-value for the null hypothesis H0: ✓ � ✓max is the
probability of observing k misstatements or less in a sample of n items, given a
binomial distribution with misstatement (i.e., error rate) parameter ✓ = ✓max:

p(X  k) =
kX

i=0

✓
n

k

◆
✓kmax(1� ✓max)

n�k. (5.A.1)

The posterior probability for H+ given a Beta(1, 0) prior distribution is the proba-
bility that the misstatement parameter exceeds ✓max given a Beta(1+k, 0+n�k)
posterior distribution:

p(H+ |n, k) =

Z
1

✓max

✓k(1� ✓)n�k�1

B(↵,�)
. (5.A.2)

Since the cumulative distribution function for ✓max under a Beta(↵, �) distribution
(i.e., the posterior probability for H�) is the regularized incomplete beta function
I✓max(↵, �), the posterior probability for H+ given a Beta(1, 0) prior distribution
can also be expressed as

p(H+ |n, k) = 1� I✓max(1 + k, n� k). (5.A.3)

The relationship between the two quantities in Equation 5.A.1 and Equation 5.A.3
is well known and provided in Equation 5.A.4, see Pearson (1934, p. 24), Hartley
and Fitch (1951), Rai↵a and Schlaifer (1961, p. 271) and Dutka (1981).

kX

i=0

✓
n

k

◆
✓kmax(1� ✓max)

n�k = 1� I✓max(1 + k, n� k) (5.A.4)

5.A.2 The impartial Bayes factor approaches 1 if ✓̂ = ✓max

For the impartial prior distribution, the prior odds are 1, and, consequently, the
Bayes factor is equal to the posterior odds. This means that if the posterior odds
are 1, then the Bayes factor is also 1. Because the hypotheses are represented by
the range above and below ✓max, posterior odds of 1 correspond to a posterior
median of ✓max. We prove that, in the case of ✓̂ = ✓max, the limit of the median of
any beta posterior distribution is equal to ✓max, regardless of the prior parameters
↵ and �. Hence, if ✓̂ = ✓max the posterior odds and the Bayes factor approach 1
for all impartial prior distributions.
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The median ✓.5 of the Beta(↵, �) distribution can be approximated as (Ker-
man, 2011a)

✓.5 ⇡
↵�

1

3

↵+ � �
2

3

. (5.A.5)

Following Bayes’ rule, a Beta(↵, �) prior distribution is updated to a posterior
distribution by the data k and n. The posterior distribution is then defined as
Beta(↵+ k, � + n� k). However, k

n = ✓̂ = ✓max implies k = ✓maxn and therefore
the posterior distribution can also be written as Beta(↵+ ✓maxn, �+n� ✓maxn).
Plugging these parameters of the posterior distribution into Equation 5.A.5 for
the median yields

✓.5 =
↵+ ✓maxn�

1

3

↵+ ✓maxn+ � + n� ✓maxn�
2

3

. (5.A.6)

Simplification of Equation 5.A.6 leads to the following approximation of the pos-
terior median in the case where ✓̂ = ✓max:

✓.5 =
�

1

3
+ ↵+ ✓maxn

�
2

3
+ ↵+ � + n

. (5.A.7)

Dividing the numerator and the denominator in Equation 5.A.7 by the sample size
n yields

✓.5 =
�

1

3n + ↵
n + ✓max

�
2

3n + ↵
n + �

n + 1
. (5.A.8)

The expressions � 1

3n ,
↵
n , �

2

3n , and
�
n in Equation 5.A.8 all tend to zero as n tends

to infinity. Hence, in the case of ✓̂ = ✓max the limit of the posterior median of any
Beta(↵, �) posterior distribution is ✓max regardless of the prior parameters ↵ and
�, see Equation 5.A.9.

lim
n!1

✓.5 = ✓max (5.A.9)

5.A.3 Relative reduction in sample size compared to NHST

when k = 0

The impartial prior distribution can result in a relative reduction of
ln(

1
2 )

ln(ACR)

compared to NHST procedures. When no errors are expected in the sample,
the NHST procedure for planning the sample size comes down to finding the

smallest integer n for which (1�✓max)n  ACR. This implies that n = ln(ACR)

ln(1�✓max)
.

By using the impartial prior distribution, the posterior distribution is Beta(1,
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ln(
1
2 )

ln(1�✓max)
+ n� k) instead of Beta(1, n� k), since Beta(1, 0) is the implicit prior

in case of NHST. This means that the sample size is reduced by �n =
ln(

1
2 )

ln(1�✓max)

in absolute terms. Dividing this absolute reduction by the NHST sample size n

results in the relative sample size reduction of
ln(

1
2 )

ln(ACR)
.

5.A.4 Relationship impartial Bayes factor and p-value

For ✓exp = 0 and ✓̂ = 0 (k = 0), the relationship between the one-sided p-value

and the impartial Bayes factor is BF�+ = 2�p
p for all n. Moreover, for ✓̂ = 1

(k = n) the relationship between the p-value and the impartial Bayes factor goes
to BF�+ = 1�p

p as n tends to infinity.
To prove this, we first determine the exact relationship between the impartial

Bayes factor and the one-sided p-value. For the impartial prior distribution, the
prior odds are 1, and, consequently, the impartial Bayes factor is the ratio of
posterior odds:

BF+� =
p(H+ | y)

1� p(H+ | y)
. (5.A.10)

To determine the relationship between the impartial Bayes factor and the p-value,
we can introduce p(X  k) (i.e., the one-sided p-value) into the right side of
Equation 5.A.10, resulting in Equation 5.A.11.

BF+� =
p(H+ | y)p(X  k)

(1� p(H+ | y))p(X  k)

BF+� =
p(H+ | y)p(X  k)

p(X  k)� p(H+ | y)p(X  k)

BF+� =
p(X  k)

p(Xk)�p(H+ | y)p(Xk)
p(H+ | y)

BF+� =
p(X  k)

p(Xk)
p(H+ | y) � p(X  k)

(5.A.11)

Note that p(X  k) > 0 and p(H+ | y) > 0. Thus, the exact relationship
between the one-sided p-value and the impartial Bayes factor reads BF+� =

p(Xk)
p(Xk)
p(H+ | y)�p(Xk)

or BF�+ =
p(Xk)
p(H+ | y)�p(Xk)

p(Xk) .

Since p(X  k) is equal to the posterior probability for H+ using a Beta(1,

0) prior distribution (Equation 5.A.4), the factor p(Xk)
p(H+ | y) is a weighting factor

that weighs the probability of H+ under a Beta(1 + k, 0 + n � k) posterior dis-
tribution with the posterior probability of H+ given the specified impartial prior
distribution. To determine the bounds of the relationship in Equation 5.A.11, we
calculate the weighting factor for the two most extreme cases: k = 0 (✓̂ = 0) and
k = n (✓̂ = 1).
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We first determine the lower bound of Equation 5.A.11. Concretely, for ✓exp =

0 (the impartial Beta(1,
ln(

1
2 )

ln(1�✓max)
) prior with a mode at zero) the weighting factor

for a given sample size n and number of misstatements k is equal to

p(X  k)

p(H+ | y)
=

Pk
i=0

�n
k

�
✓k(1� ✓)n�k

R
1

✓max

✓k(1�✓)
ln( 1

2
)

ln(1�✓max)
+n�k�1

B(1+k,
ln( 1

2
)

ln(1�✓max)+n�k)
d✓

. (5.A.12)

Filling in k = 0 and simplifying the result leads to a weighting factor of 2.
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Plugging Equation 5.A.13 into Equation 5.A.12 shows that if k = 0, for all n,
the relationship between the one-sided p-value and the impartial Bayes factor is
BF+� = p(Xk)

2�p(Xk) or BF�+ = 2�p(Xk)
p(Xk) .

On the other hand, the probability of observing k = n misstatements or fewer
in a sample of n items (i.e., the one-sided p-value) is equal to 1. Moreover, the
posterior probability for H+ given an impartial prior distribution approaches 1 as
the sample size goes to infinity (an implication of Equation 5.4.3). In this case,
the limit of the weighting factor is 1.
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lim
n!1

p(X  k)

p(H+ | y)
= 1 (5.A.14)

This implies that, in this case, the relationship between the p-value and the impar-
tial Bayes factor goes to BF+� = p(Xk)

1�p(Xk) or BF�+ = 1�p(Xk)
p(Xk) as the sample

size increases.
Consequently, all possible impartial Bayes factors BF�+ lie on or within the

upper bound of 2�p
p and the lower bound of 1�p

p , see Figure 5.8.
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Figure 5.8: Comparison of one-sided p-values and natural logarithmic impartial
Bayes factors for a performance materiality ✓max = 0.03. Darker (blue) points
correspond to higher sample sizes. The black lines represent the upper bound
ln( 2�p

p ) and the lower bound ln( 1�p
p ) of the relationship between the one-sided

p-value and the impartial Bayes factor.
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5.A.5 Parameters of the impartial prior distribution when

↵ = 1 and � > 1

The mode ✓exp of the impartial beta prior distribution, given ↵ = 1 and � > 1,
is zero. Furthermore, the median ✓max of the impartial beta prior distribution,
given ↵ = 1 and � > 1, is (Kerman, 2011a)

✓max = 1� 2�
1
� . (5.A.15)

Hence, to define the � parameter of the impartial prior distribution given a specific
value of ✓max, we solve Equation 5.A.15 for �.

✓max + 2�
1
� = 1

2�
1
� = 1� ✓max

�
1

�
ln(2) = ln(1� ✓max)

�
ln(2)

�
= ln(1� ✓max)

� ln(2) = ln(1� ✓max)�

� =
� ln(2)

ln(1� ✓max)
(5.A.16)

Note that � ln(2) = ln( 1
2
), and thus a final simplification of Equation 5.A.16 leads

to the following closed formula for �.

� =
ln( 1

2
)

ln(1� ✓max)
(5.A.17)

5.A.6 Parameters of the impartial prior distribution when

↵ > 1 and � > 1

The mode ✓exp of the impartial beta prior distribution, given ↵ > 1 and � > 1, is
given by

✓exp =
↵� 1

↵+ � � 2
. (5.A.18)

Furthermore, the median ✓max of the impartial beta prior distribution, given ↵ > 1
and � > 1, is approximated by (Kerman, 2011a)

✓max ⇡
↵�

1

3

↵+ � �
2

3

. (5.A.19)
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Hence, to define the ↵ and � parameters of the impartial prior distribution for
any combination of ✓max and ✓exp, we can solve the system of equations com-
prised of Equation 5.A.18 and Equation 5.A.19 for ↵ and �. First, we rewrite
Equation 5.A.19 for the median to Equation 5.A.20 by isolating ↵.

✓max ⇡

3↵�1

3

3↵+3��2

3

✓max ⇡
3↵� 1

3↵+ 3� � 2

✓max(3↵+ 3� � 2) ⇡ 3↵� 1

3✓max↵+ 3✓max� � 2✓max ⇡ 3↵� 1

3✓max↵� 3↵ ⇡ 2✓max � 3✓max� � 1

3↵(✓max � 1) ⇡ 2✓max � 3✓max� � 1

↵ ⇡
2✓max � 3✓max� � 1

3(✓max � 1)
(5.A.20)

Equation 5.A.20 can then be used to substitute ↵ in Equation 5.A.18.

✓exp ⇡

2✓max�3✓max��1

3(✓max�1)

2✓max�3✓max��1

3(✓max�1)
+ � � 2

(5.A.21)

We then rewrite Equation 5.A.21 for the mode to Equation 5.A.22 by isolating �.

✓exp ⇡

2✓max�3✓max��1�3(✓max�1)

3(✓max�1)

2✓max�3✓max��1+3�(✓max�1)�6(✓max�1)

3(✓max�1)
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5�3��4✓max
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(5.A.22)

Thus, a final simplification of Equation 5.A.22 leads to a definitive expression for
�.

� ⇡
2 + ✓max(4✓exp � 1)� 5✓exp

3(✓max � ✓exp)
(5.A.23)
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Since � is solely determined by ✓max and ✓exp, we can plug Equation 5.A.22
into Equation 5.A.20, yielding an expression for ↵ that is also solely determined
by ✓max and ✓exp.

↵ ⇡

2✓max � 3✓max
2�✓max+4✓exp✓max�5✓exp

3(✓max�✓exp)
� 1

3(✓max � 1)
(5.A.24)

Hence, a final simplification of Equation 5.A.24 leads to a definitive expression for
↵.

↵ ⇡
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↵ ⇡
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↵ ⇡
3✓max � 4✓max✓exp � ✓exp
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↵ ⇡
3✓max � ✓exp(4✓max + 1)

3(✓max � ✓exp)
(5.A.25)

5.B Bayes factors using the gamma distribution

The procedure discussed in this chapter requires that the auditor specifies a beta
prior distribution for ✓ in the range [0, 1]. The beta distribution is generally used
for attributes sampling, where an item can be judged as correct or incorrect and
the likelihood is therefore considered binomial6. However, it has been argued that
for monetary unit sampling (MUS), where items can be judged as partially cor-
rect, a gamma prior distribution with shape parameter ↵ and rate (inverse scale)
parameter � combined with a Poisson likelihood is a more fitting setup (Stewart,
2013). The probability density for the gamma distribution with parameters ↵, � is
defined in Equation 5.B.1, in which �(↵) is the gamma function. Using a gamma
prior distribution in a MUS context, the procedure for calculating the Bayes factor
is the same but the calculations for the ↵ and � parameters of the collection of
impartial prior distributions are di↵erent.

p(✓;↵,�) =
�↵

�(↵)
✓↵�1e��✓ (5.B.1)

As an example, suppose that for a population of m = 1, 000, 000 monetary
units a performance materiality of ✓max = 30, 000 monetary units applies. The
hypotheses that the auditor wants to test are the hypothesis that the amount of

6Note that the beta distribution can also be used for monetary unit sampling.
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misstatement in the population is lower than the performance materiality H�: ✓ <
30, 000 versus the hypothesis that the amount of misstatement in the population
is higher than the performance materiality H+: ✓ > 30, 000.

To test these hypotheses, the auditor can specify a Gamma(↵, �) prior dis-
tribution for ✓ in the range [0; m]. The prior probability of the hypothesis H�:
✓ < ✓max is represented by the total probability in the range [0; ✓max) of the prior
distribution. Vice versa, the prior probability of the hypothesis H+: ✓ > ✓max is
represented by the total probability in the range (✓max; m] of the prior distribu-
tion. For the prior distribution to be impartial with respect to the hypotheses H�

and H+, the total probability in the range [0; ✓max) must be equal to the total
probability in the range (✓max; m].

5.B.1 Zero expected most likely misstatement

A gamma prior distribution that has this property, under the assumption of zero

expected misstatements (i.e., ↵ = 1), is the Gamma(↵ = 1, � = �
ln(

1
2 )

✓max
) prior

distribution. Calculating the ↵ and � parameters of this prior distribution for a
performance materiality ✓max = 30, 000 results in ↵ = 1 and � = 0.00002310491.

In MUS, the sample is generally evaluated using the sum of the taints of the
items (American Institute of Certified Public Accountants (AICPA), 2019, Ap-
pendix C). The taint of an item is the proportional error of that item ti =

yi�xi

yi
.

Suppose that n = 50 items are selected, and a single item is found to be overstated.
This item has a recorded value of yi = 5, 000 and a true value xi = 2, 000, yielding
a taint ti = 0.6. Thus, a total of k =

Pn
i=1

ti = 0.6 taints were found in the
sample. The resulting posterior distribution is of the form Gamma(↵ = 1+k, � =

�
ln(

1
2 )

✓max
+ 1

m/n ), and the posterior parameters are ↵ = 1.6 and � = 0.00007310491.
The Bayes factor in this example is BF�+ = 3.03, implying that these sample

outcomes are 3.03 times more likely to occur under H� than under H+. As is the
case for attributes sampling, under the assumption of no expected misstatements
the impartial Bayes factor is easy to calculate using summary statistics from the
sample as it is solely a function of the performance materiality, the total value of
the population, and the sample outcomes, see Equation 5.B.2.

BF�+(✓max,m, n, k) =

R ✓max

0
p(✓; 1 + k,�

ln(
1
2 )

✓max
+ 1

m/n )d✓
Rm
✓max

p(✓; 1 + k,�
ln(

1
2 )

✓max
+ 1

m/n )d✓
(5.B.2)

5.B.2 Non-zero expected most likely misstatement

Incorporating the expected most likely misstatement ✓exp into the impartial prior
distribution can only be achieved using an iterative procedure since, in the case
of ↵ > 1, the gamma distribution does not have an approximate or closed-form
expression for the median. However, its mode can be expressed as ✓exp = ↵�1

� ,

so that � can be expressed in terms of ↵ as � = ↵�1

✓exp
. Therefore, to approximate

the values of ↵ and � one can increase the value of ↵ (starting at ↵ = 1) until the
median of the prior distribution is close to—or equal to––✓max.
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Suppose that the auditor expects a most likely error of ✓exp = 15, 000. Using
the procedure described above, the parameters for the gamma prior distribution
can be determined as ↵ = 1.68095 and � = 0.00004539667. The mode of this prior
distribution is equal to 15,000 and its median is equal to 30,000. After seeing the
sample outcomes of n = 50 and k = 0.6, the posterior parameters are ↵ = 2.28095
and � = 0.00009539667. The Bayes factor is BF�+ = 2.536, implying that the
data are 2.536 times more likely to occur under the hypothesis H� than under the
hypothesis H+.

5.C Bayes factor tables

This appendix presents impartial Bayes factors (BF�+) using the beta distribution
for combinations of the sample size, n, and the observed misstatements, k, against
a performance materiality of ✓max.

5.C.1 Impartial Bayes factors for a performance materiality of

10 percent

This table presents Bayes factors in favor of tolerable misstatement based on equal
prior probabilities and zero expected errors for a performance materiality of 10
percent.

Table 5.3: Impartial Bayes factors in favor of tolerable misstatement for a perfor-
mance materiality of 10 percent.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
n = 20 15.45 3.16 1.02 0.37 0.14 0.05
n = 25 26.86 5.18 1.66 0.64 0.26 0.1
n = 30 46.18 8.32 2.6 1.02 0.43 0.18
n = 35 78.9 13.22 3.98 1.55 0.68 0.3
n = 40 134.31 20.91 6.02 2.31 1.02 0.47
n = 45 228.15 33.04 9.04 3.37 1.48 0.7
n = 50 387.07 52.26 13.54 4.89 2.12 1.02
n = 55 656.19 82.8 20.29 7.05 3 1.43
n = 60 1111.96 131.53 30.48 10.15 4.21 1.99
n = 65 1883.81 209.52 45.96 14.64 5.89 2.74
n = 70 3190.94 334.68 69.56 21.18 8.24 3.76
n = 75 5404.57 536.1 105.74 30.75 11.53 5.13
n = 80 9153.39 861.01 161.44 44.86 16.2 7.01
n = 85 15502.03 1386.24 247.53 65.75 22.84 9.59
n = 90 26253.52 2237.05 381.1 96.85 32.35 13.16
n = 95 44461.27 3617.78 589.06 143.38 46.06 18.12

n = 100 75296.24 5862.32 913.89 213.31 65.91 25.06
n = 125 1048856 67147.91 8618.95 1662.07 427.35 136.96
n = 150 1.46e+07 794128.5 86567.11 14188.07 3105.98 850.65
n = 200 2.83e+09 1.18e+08 9908457 1247503 209910.8 44244.4
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5.C.2 Impartial Bayes factors for a performance materiality of

5 percent

This table presents Bayes factors in favor of tolerable misstatement based on
equal prior probabilities and zero expected errors for a performance materiality of
5 percent.

Table 5.4: Impartial Bayes factors in favor of tolerable misstatement for a perfor-
mance materiality of 5 percent.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
n = 20 4.58 1.02 0.31 0.09 0.03 0.01
n = 25 6.21 1.38 0.43 0.14 0.04 0.01
n = 30 8.32 1.83 0.59 0.21 0.07 0.02
n = 35 11.04 2.39 0.79 0.29 0.1 0.03
n = 40 14.56 3.08 1.02 0.39 0.15 0.05
n = 45 19.11 3.93 1.3 0.51 0.2 0.08
n = 50 24.99 4.99 1.64 0.65 0.27 0.11
n = 55 32.59 6.29 2.05 0.82 0.35 0.15
n = 60 42.41 7.92 2.54 1.02 0.44 0.19
n = 65 55.1 9.93 3.14 1.26 0.55 0.25
n = 70 71.51 12.44 3.85 1.54 0.68 0.31
n = 75 92.7 15.56 4.72 1.87 0.84 0.39
n = 80 120.1 19.45 5.76 2.26 1.02 0.48
n = 85 155.5 24.3 7.03 2.72 1.23 0.59
n = 90 201.26 30.37 8.57 3.27 1.47 0.71
n = 95 260.39 37.95 10.43 3.93 1.75 0.85

n = 100 336.81 47.44 12.7 4.7 2.08 1.02
n = 125 1216.81 145.9 34.12 11.45 4.78 2.29
n = 150 4389.25 456.03 93.6 28.13 10.83 4.93
n = 200 57056 4661.45 758.92 184.08 58.79 22.99

5.C.3 Impartial Bayes factors for a performance materiality of

1 percent

This table presents Bayes factors in favor of tolerable misstatement based on
equal prior probabilities and zero expected errors for a performance materiality of
1 percent.
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Table 5.5: Impartial Bayes factors in favor of tolerable misstatement for a perfor-
mance materiality of 1 percent.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
n = 20 1.45 0.29 0.06 0.01 0 0
n = 25 1.57 0.32 0.07 0.02 0 0
n = 30 1.7 0.35 0.08 0.02 0 0
n = 35 1.84 0.39 0.1 0.02 0 0
n = 40 1.99 0.42 0.11 0.02 0 0
n = 45 2.14 0.46 0.12 0.03 0.01 0
n = 50 2.31 0.5 0.13 0.03 0.01 0
n = 55 2.48 0.54 0.15 0.04 0.01 0
n = 60 2.66 0.59 0.16 0.04 0.01 0
n = 65 2.84 0.63 0.18 0.05 0.01 0
n = 70 3.04 0.68 0.2 0.05 0.01 0
n = 75 3.25 0.73 0.21 0.06 0.02 0
n = 80 3.47 0.78 0.23 0.07 0.02 0
n = 85 3.7 0.84 0.25 0.07 0.02 0
n = 90 3.94 0.9 0.27 0.08 0.02 0.01
n = 95 4.2 0.96 0.29 0.09 0.03 0.01

n = 100 4.46 1.02 0.32 0.1 0.03 0.01
n = 125 6.02 1.37 0.44 0.15 0.05 0.01
n = 150 8.03 1.81 0.6 0.22 0.08 0.02
n = 200 13.93 3.02 1.02 0.4 0.16 0.06

5.D Software implementation

To promote the use of impartial Bayes factors in the audit practice, we discuss
two free and open-source software packages that can be used to obtain the im-
partial Bayes factor from summary statistics of an audit sample. First, we show
how to obtain the impartial Bayes factor in R through the package ‘jfa’ (Derks,
2022). Next, we show how to obtain the impartial Bayes factor using the statis-
tical software program JASP (JASP Team, 2022; Love et al., 2019) through its
Audit module (Derks et al., 2021b).

5.D.1 Implementation in R

In R, the impartial Bayes factor can be obtained via the code below. The auditor
can use the ‘evaluation’ function from the ‘jfa’ package together with the value
of the performance materiality, ✓max = 0.03, the sample size, n = 50, and the
observed misstatements, k = 1, to reproduce the impartial Bayes factor for the
example discussed in the chapter.

library(jfa) # Load the jfa package

m <- 0.03 # Materiality
n <- 50 # Sample size
k <- 1 # Observed misstatements

# Create the impartial prior distribution using the auditPrior() function
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prior <- auditPrior(method = "impartial", materiality = m,
likelihood = "binomial")

# Compute the impartial Bayes factor using the evaluation() function
evaluation(materiality = m, x = k, n = n, prior = prior)

# Bayesian Audit Sample Evaluation
#
# data: 1 and 50
# number of errors = 1, number of samples = 50, taint = 1, BF10 = 1.8218
# alternative hypothesis: true misstatement rate is less than 0.03
# 95 percent credible interval:
# 0.00000000 0.06354809
# estimate:
# 0.01393601
# estimates obtained via method "binomial" + "prior"

5.D.2 Implementation in JASP

This example can be reproduced in JASP via the Bayesian evaluation analysis in
the Audit module. The interface of the Bayesian evaluation analysis in JASP and
the options required to reproduce this example are displayed in Figure 5.9.

Figure 5.9: Snapshot of the interface of the Bayesian evaluation analysis in JASP
and the options required to compute the impartial Bayes factor for ✓max = 0.03,
n = 50 and k = 1.

The Bayesian evaluation analysis allows for evaluation of audit samples on the
basis of summary statistics only, and it is therefore not required to load a data
set. After opening the analysis, the auditor can check the option ‘Performance
materiality’ and specify ✓max as 3 percent. Next, the auditor can fill in the sample
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outcomes n = 50 and k = 1 as the ‘Sample size’ and the ‘Number of errors’
respectively. To use the impartial beta prior distribution, the auditor can navigate
to the ‘Prior’ section and select the option ‘Impartial’. The results of the statistical
analysis are automatically computed.

The table at the top of the output shows the sample size, n, and number
of found misstatements, k, in the sample. By default, the total tainting (i.e.,
proportional error) in the sample is shown alongside the most likely error in the
population (i.e., the mode of the posterior distribution). The last column in the
table displays the 95 percent upper credible bound (i.e., the 95th percentile of the
posterior distribution), in this case 0.064.

The Bayes factor in favor of the hypothesis of tolerable misstatement (BF�+) is
displayed by default. Given the sample outcomes and the performance materiality
in this example, the impartial Bayes factor in favor of tolerable misstatement is
1.822. Under the ‘Tables’ and ‘Plots’ sections the auditor is also able to request
a table and a figure containing descriptive information of the prior and posterior
distribution by clicking ‘Prior and posterior’.
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Chapter 6

JASP for Audit: Statistical Tools for

the Auditing Practice

Abstract

Properly setting up, conducting and documenting a statistical audit sam-
ple is not an easy task. This chapter introduces JASP for Audit, open-source
and user-friendly software specifically designed for auditors to make the sta-
tistical components of an audit easier. Firstly, an overview of the function-
ality of JASP for Audit is provided. Secondly, four distinguishing features
of the software are discussed and their benefits for the auditing practice are
explained. Thirdly, the software is demonstrated by means of three exam-
ples concerning, respectively, testing internal controls, tests of details and
tax auditing. The chapter concludes with recommendations for the use of
JASP for Audit in the auditing practice.

Keywords: audit, Bayesian, open-source, sampling, software.

6.1 Introduction

Audit sampling has long been part of the audit process, both for testing internal
controls and for substantive testing (Power, 1992; de Swart et al., 2013). Al-
though current developments within data analysis o↵er auditors the possibility
to integrally audit some populations using data (Brown-Liburd et al., 2015; Sal-
ijeni et al., 2019), it often remains more e↵ective and e�cient to use a sample
for populations for which the correct values are not readily available or for which
it can be wrongly assumed that the correct values are available (van Batenburg,
2018b,a). After all, using a statistical sample auditors can make a probability

Parts of this chapter are published as Derks, K., de Swart, J., van Batenburg, P., Wagen-
makers, E.–J., & Wetzels, R. (2021). JASP for Audit: Bayesian tools for the auditing practice.
Journal of Open Source Software, 6 (68), 2733. doi: https://doi.org/10.21105/joss.02733
and under review for publication (in dutch) as Derks, K., de Swart, J., & Wetzels, R. (2022)
Open-source software als brug tussen de auditor en de statisticus.
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statement about an entire population on the basis of only a small observed part of
this population. In addition, developments in the field of statistics o↵er more op-
portunities to deal more e↵ectively and e�ciently with available prior information
and (sample) data than before (Stewart, 2013; de Swart et al., 2013; Derks et al.,
2021a, 2022b). As a result, audit sampling is becoming more targeted and less
expensive (van Batenburg, 2018b); an example of how analytical procedures and
audit sampling are not mutually exclusive, but rather complementary (Yoon and
Pearce, 2021). Therefore, audit sampling as a tool to contribute to su�cient and
appropriate audit evidence will not disappear from audit practice any time soon.
On the contrary, the combination of analytical procedures and audit sampling is
expected to become increasingly important in the field (van Batenburg, 2018a;
Kogan et al., 2019).

Despite the major role of audit sampling in the auditing practice (Van Der Nest
et al., 2015; Christensen et al., 2015), properly designing, implementing and doc-
umenting a statistical sample is not an easy task (see for example ISA 530 about
sampling (International Auditing and Assurance Standards Board (IAASB), 2018)).
Three obstacles can be identified herein that pose a hurdle for auditors. First, au-
ditors must possess su�cient knowledge of statistical theory to set up and conduct
a statistical sample in a responsible manner (e.g., Stewart, 2012), while they are
not always adequately trained to possess, let alone maintain, the expert knowl-
edge of a statistician (Symon, 1974). Second, auditors need access to software
that is easy to use and performs analyses in accordance with international audit-
ing standards (Schouten, 2007; Binck, 2012; Ahmi and Kent, 2013; Bradford et al.,
2020). Last, the documentation and interpretation of statistical results is not al-
ways easy. For example, it can be di�cult to formulate the statistical statement
about the misstatement in a population associated with a frequentist confidence
interval (Hoekstra et al., 2014), or to ascertain the amount of evidence for accep-
tance or rejection of a financial population from a p-value (see Chapter 4). All
three obstacles lead to the fact that planning and evaluating a statistical sample is
often outsourced to auditors with more specialized knowledge of statistics (Brazel
and Agoglia, 2007).

With the current developments in the field of data analysis, external auditors
are increasingly encountering the possibilities of using statistical methods and
automated processes to gather audit evidence (e.g., Brown-Liburd and Vasarhelyi,
2015; Appelbaum et al., 2017; Boersma et al., 2020). For internal auditors, a
similar impact of these developments applies (de Swart et al., 2016). In line with
this trend, auditors are therefore increasingly expected to reduce their dependence
on statisticians by developing their own data analytic skills (Li, 2022). In addition,
the growing use of analytical procedures will also increase the complexity of the
statistical sample (Appelbaum et al., 2017). These developments have the e↵ect
that auditors today are expected to be qualified in multiple areas of statistics,
which are not necessarily part of an auditor’s expertise (Commissie Eindtermen
Accountantsopleiding (CEA), 2020). The open-source software JASP for Audit
helps auditors to correctly set up, perform and document a statistical sample, thus
bridging the gap between the auditor and the statistician.

In this chapter we introduce JASP for Audit, software specifically designed to
support auditors in the statistical components of an audit. The software has four
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features that are distinctive from other statistical software, and advantageous in
the context of auditing practice. First, the interface of the software was developed
with the auditor in mind. This means that the interface is user-friendly (e.g., the
graphical user interface supports both Dutch and English), and that it aligns with
international auditing standards. Second, the design of JASP for Audit ensures
that sampling activities are documented and thus can be reproduced in a statisti-
cally sound manner. For example, the software automatically generates a report
that provides insight into the statistical choices made in planning, selection and
evaluating the sample and the interpretation of these choices. This is relevant to
the auditor because conducting and reporting a statistical sample still proves to be
relatively di�cult (International Forum of Independent Audit Regulators (IFIAR),
2020, 2021, 2022). JASP for Audit also minimizes the chance of computational
errors, as it is previously published in Derks et al. (2021b), which means that the
technical and functional integrity of the software has been independently deter-
mined. Third, in addition to the standard frequentist statistics JASP for Audit
also o↵ers Bayesian statistics, which allows auditors to make optimal use of exist-
ing information from earlier stages of the audit or, for example, prior knowledge
about the auditee or industry. In other words, JASP for Audit helps auditors un-
derstand, properly perform, document, and justify their—increasingly complex—
audit samples. Finally, JASP for Audit is open-source software (Von Krogh and
Spaeth, 2007). This means that the software can be downloaded for free and the
source code is freely available to anyone.

This chapter is organized as follows. Section 6.2 discusses the aforementioned
four distinguishing features of JASP for Audit. Subsequently, Section 6.3 demon-
strates the software by means of three examples from the audit practice. Finally,
Section 6.4 contains conclusions and recommendations for the use of JASP for
Audit in practice.

6.2 Open-source software for auditors: JASP for Audit

Open-source software is software whose source code is publicly available without
restriction and without cost. A characteristic of open source is that the source
code can be adapted to create derivative software. This derivative software must be
distributed under the same conditions as the original software (for the exact defini-
tion of open-source, see https://opensource.org/osd). However, in addition to
the technical side—who is allowed to view, modify and distribute the code—there
is another characteristic of open source software that is important to mention.
Namely, unlike closed-source software, open-source software is developed collab-
oratively in a community with software developers and users. Thus, open-source
development is sometimes compared to the crowded Bazaar and closed-source de-
velopment to the Cathedral (Raymond, 1999). This has a number of advantages,
for example that the end user always comes first and development of the software
is normally faster than with closed-source (AlMarzouq et al., 2005; Morgan and
Finnegan, 2007). An example of open source software aimed at the auditor is
JASP.
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JASP1 (JASP Team, 2022; Love et al., 2019) is free and open-source statistical
software with a point-and-click graphical interface which runs on the R statistical
programming language (R Core Team, 2022). The software is a widely used tool for
statistical analysis within several scientific fields (e.g., Wagenmakers et al., 2018a;
Brydges and Gaeta, 2019; Faulkenberry et al., 2020; Kelter, 2020). For example,
in 2022 JASP is downloaded around 33,000 times per month and is included in
the curriculum of 226 universities from 59 di↵erent countries. The software is
available in 10 di↵erent languages, including English and Dutch. JASP includes a
large assortment of standard statistical analyses—such as t-tests (Gronau et al.,
2019), linear regression (van den Bergh et al., 2021) and ANOVA (van den Bergh
et al., 2020)—in both frequentist and Bayesian forms. In addition, JASP currently
o↵ers 19 add-on modules that add functionality to the software (e.g., Ly et al.,
2018).

JASP for Audit (Derks et al., 2021b) is an add-on module for JASP that
enriches the software with functionality for statistical sampling in the audit. The
purpose of JASP for Audit is to provide auditors with guidance on the statistical
aspects of designing, implementing and reporting a statistical audit sample. This is
done by implementing the most commonly used techniques for audit sampling in a
user-friendly interface that directly relates to familiar concepts from international
auditing standards. In addition, JASP for Audit automatically and on-the-fly
produces an audit report with the statistical results and the interpretation of these
results. Finally, JASP gives auditors access to the latest academically developed
statistical techniques in a user-friendly way, as academic development of auditor-
focused statistical methods goes hand in hand with development of the software.
In short, by taking over the statistical heavy lifting from auditors and guiding
them through planning, selection, performing and evaluating an audit sample,
JASP for Audit reduces audit complexity.

The sections below discuss four distinguishing features of JASP for Audit for
the auditing practice: the interface is user-friendly and aligns with international
auditing standards, the audit report is automatically generated, there is a choice
between frequentist and Bayesian statistics, and the source code is open-source.

6.2.1 Feature 1: The user interface is designed for auditing

and therefore user-friendly

JASP for Audit has a point-and-click interface, which means that results are avail-
able without delay once the user has clicked an option. The interface is also
available in Dutch and relates to familiar concepts from auditing standards. For
example, the Audit Risk Model is included in JASP for Audit, both record sam-
pling and monetary unit sampling are supported, as are various selection methods
including cell sampling. To increase accessibility for novice users, the most com-
mon values have been set as default for all options and advanced options have
been hidden to keep the interface simple.

The statistical stages from the sampling process are implemented in a workflow
and each in a separate analysis. The workflow automatically goes through the

1JASP can be freely downloaded for Windows, Mac, and Linux at www.jasp-stats.org.
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standard stages for statistical audit sampling, selects the appropriate statistical
technique, interprets the results, and a produces a readable audit report. This
approach reduces the risk of statistical errors and increases auditors’ understanding
of the statistical outcomes. In addition, it is possible to complete each stage in
the workflow individually.

Each stage of the sampling workflow is documented with a help file that pro-
vides additional explanation about statistical concepts.

6.2.2 Feature 2: An audit report is automatically generated

JASP for Audit automatically generates the statistical results in both text, tables
and figures, including an audit report in the language of both the auditor and the
statistician. The report describes all statistical characteristics of the sample so that
it can be reproduced at all times. In addition, the report spells out the statistical
results, which makes the interpretation of the outcomes easier. The structure of
the report follows the three statistical stages in the sampling workflow: planning,
selection and evaluation. This is convenient for auditors, as it allows the report
to directly connect to the options entered and the work performed. Examples
of elements of the report include a table with the sample size, a table with the
selection results, and a table with the results of the statistical evaluation.

The report can be attached in its entirety to a general audit report. In addition,
the data file, the selected options and the results can be saved as a .jasp file. For
example, a statistician can set up the sample and save the file, which can then be
read by an auditor to then perform and/or reproduce the sample.

6.2.3 Feature 3: Both frequentist and Bayesian statistics are

facilitated

JASP for Audit provides both a frequentist and a Bayesian version of the sampling
workflow and the individual stages in the workflow. Consequently, JASP for Audit
allows auditors to take advantage of the benefits of Bayesian statistics, which
previously were not easy to use within an audit. To our knowledge, there is no
internationally and widely accessible, externally validated software available that
implements Bayesian methods specifically for auditors.

Bayesian statistics is a way to increase e�ciency and transparency in sampling
by allowing available information to be optimally utilized (Derks et al., 2021a).
For example, Bayesian statistics allows experts’ knowledge to be incorporated into
statistical analyses directly or through analytical procedures, which can reduce
sample size and increase e�ciency. In addition, within Bayesian statistics it is
allowed to continuously monitor evidence over time (Wagenmakers et al., 2008).
This is in contrast to the usual frequentist statistical analyses at a given sample
size (Touw and Hoogduin, 2012).
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6.2.4 Feature 4: The source code is open-source

JASP for Audit is open-source software, which means that the source code is freely
available to anyone2. This has three advantages for the audit practice.

First, anyone can download the software for free without having to purchase
a license for it. This eliminates the need for organizations to spend money on
software licenses (e.g., IDEA (CaseWare Analytics, 2022), ACL (Dilligent, 2022)),
resulting in a reduction in audit costs. Among other things, this makes JASP for
Audit suitable as software for students, or to use when teaching courses on audit
sampling to practitioners.

A second advantage of the open-source structure of JASP for Audit is that
the source code is easy to adopt and modify. This means that users can propose
or add features3 to JASP for Audit themselves. In addition, accounting firms
can implement their own preferences in the user interface, or include references
to the guidelines and regulations of their professional o�ces in the software’s
documentation.

A third advantage is that it is easy to verify that the software is doing the
correct calculations under the hood. The calculations in JASP for Audit are done
in R by the package ‘jfa’ (Derks, 2022), whose source code is also open-source4

and reviewed (Derks et al., 2021b). In this way, it is easy to check the source code
of the software or to reproduce results independently in, for example, R (R Core
Team, 2022), which guarantees full transparency to the users of the software. Of
course, this feature does not take away from the fact that an accounting firm may
have additional requirements for the use of open-source software.

6.3 Practical examples

In this section, we illustrate three practical examples from an audit context us-
ing JASP for Audit. In the first example, it is shown how the sample planning
tables for testing internal controls contained in the AICPA’s audit guide (Ameri-
can Institute of Certified Public Accountants (AICPA), 2019), which we consider
relevant because it has been issued by the Association of International Certified
Professional Accountants and is publicly available, and that of an international
audit firm can be easily reproduced, justified, and expanded using JASP for Audit.
While it is true that this example is primarily aimed at the external auditor, it is
also relevant for internal auditors to use these sample sizes so that the external
auditor can rely on the work of the internal auditor (de Swart et al., 2013). The
second example shows how to reproduce an audit of internal declarations from
Kloosterman (2018) using JASP for Audit. Finally, the third example shows how
JASP for Audit can be used in the audit approach of the Dutch Tax Authorities
using the planning, drawing and evaluation of a tax sample that was recently at
the center of an appeal to the Court of Appeal of ’s-Hertogenbosch (Buitenhuis,

2The source code for JASP for Audit can be found at https://github.com/jasp-stats/
jaspAudit.

3Additional functionality for JASP for Audit can be nominated at https://github.com/
jasp-stats/jasp-issues/issues.

4The source code for the R package jfa can be found at https://github.com/koenderks/jfa.
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2022). These three examples are designed di↵erently to show a diverse applica-
tion of JASP for Audit. More examples including data and analyses are available
in the internal data library of JASP (Wagenmakers and Kucharský, 2020). See
Appendix 6.B for an introduction to the ‘jfa’ package and how to reproduce these
examples in R.

6.3.1 Testing the operation of internal control measures

The first example demonstrates the functionality of JASP for Audit through a case
familiar to the internal auditor: obtaining a minimum sample size for testing inter-
nal controls. American Institute of Certified Public Accountants (AICPA) (2019,
Appendix A) provides guidance for this in the form of tables of minimum sample
sizes, which depend on three parameters: the desired level of assurance (i.e., confi-
dence) in the statistical statement after seeing the sample, the maximum allowable
percentage of errors in the internal control measure, and the expected percentage
of errors in the internal control measure. Other factors may also play a role, such
as the frequency or nature of the control, but we limit ourselves here to the three
parameters listed in American Institute of Certified Public Accountants (AICPA)
(2019, Appendix A). A portion of American Institute of Certified Public Accoun-
tants (AICPA) (2019, Appendix A) is highlighted in Table 6.1. The following
paragraphs describe how this table can be easily reproduced and nuanced using
JASP for Audit.

Table 6.1: Sample sizes for testing internal controls (American Institute of Certi-
fied Public Accountants (AICPA), 2019, Appendix A).

Control 1 Control 2 Control 3 Control 4
Confidence 90% 95% 95% 95%
Materiality 5% 4% 3% 3%

Expected error 2% 1.5% 0.5% 0.75%
Sample size 132 192 157 208

In order to reproduce this example, it is required to activate the audit module
within JASP. This is done by clicking on the ‘+’ icon in the upper right hand
corner and then ticking the checkbox next to the ‘Audit’ module in the menu on
the right hand side of the screen. The various analyses in JASP for Audit can
then be viewed by clicking on the blue ‘Audit’ icon in the menu at the top of the
screen. This example uses the planning stage of the audit workflow.

Figure 6.1 is a snapshot of the planning stage in JASP for Audit. The left side
of the screen shows the graphical user interface, and the right side shows the audit
report with the statistical results. In the user interface, the known parameters for
the sample can be entered. To reproduce the sample size for Control 1 in Table 6.1,
a 90 percent confidence level (this confidence level is partly related to the presumed
audit evidence the auditor has already obtained from other audit procedures) and
a performance materiality of 5 percent are specified. Furthermore, the expected
errors in the sample are set to 2 percent.
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Figure 6.1: Snapshot of the planning stage in JASP for Audit for reproducing the
example in the AICPA audit guide.

After specifying the parameters, the correct calculations are automatically per-
formed under the hood, after which the audit report is completed with information
about (the establishment of) the minimum sample size. The table in the audit re-
port shows that for this specific combination of parameters a minimum sample size
of 132 applies. Changing the parameters so that they reflect the requirements for
Controls 2, 3 and 4 yields minimum sample sizes of 192, 157 and 208 respectively.

Another example of guidance for planning samples for testing internal controls
can be found in the audit guide of an international audit firm. This guide pre-
scribes that to be able to say with 90 percent certainty that no more than 8.8
percent of controls are not functioning properly, a sample size of 25 is needed if no
errors are found in the sample. With JASP for Audit it is easy to calculate and
check this (see Figure 6.2). Of course, the purpose of this last example is not to
demonstrate that JASP for Audit can reproduce the sample planning prescribed
by one specific accounting firm. It is merely an illustration that JASP for Audit
speaks the same language used within an accounting firm.

An advantage of using JASP for Audit over existing sample size tables is that
the auditor can easily calculate the corresponding sample size for any combination
of parameters. They are therefore not bound by the limited number of possibilities
in existing sample size tables and can be more flexible when planning an audit
sample. For example, in addition to the audit guide, JASP for Audit also allows
the auditor to calculate the upper bound on the population misstatement for any
other sample size than the 25 mentioned here, or for other confidence levels than
90 percent, or in case errors do get found. In addition, JASP for Audit provides
a Bayesian version of this analysis, in which prior knowledge of the controls can
be responsibly included in the planning of the sample.
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Figure 6.2: Snapshot of the planning stage for reproducing example in the audit
guide of an international audit firm.

6.3.2 Testing the correctness of internal declarations

This second example demonstrates the functionality of JASP for Audit through
a case in which an auditor conducts tests of details as part of an internal audit.
The scenario is as follows: An internal auditor wants to obtain assurance on em-
ployees’ claimed expenses for the entire year. These expenses are in a population
of declarations consisting of 769 items with a total value of e2,333,333. For this
example, a performance materiality of e105,000 (4.5 percent of the total value of
the population) and an audit risk of 5 percent applies5. In other words, in order
to state that the population does not contain a material misstatement, the audi-
tor wants to be able to state with 95 percent certainty that the total amount of
misstatement in the population is less than e105,000. In this example, there is no
pre-existing information present from earlier stages of the audit: No risk analysis
has been applied and thus the sample size cannot be reduced based on previous
work. Furthermore, in this example the auditor works with an expected error of
0, meaning they do not allow for misstatements to occur in the sample.

The data for this example represent the 769 internal declarations of the organi-
zation, each of which has a corresponding booked value and a true value. The true
value has been added for illustrative purposes, as it is normally determined by the
auditor when the sample is audited. The following sections discuss step-by-step
the planning, selection, and evaluation of the audit sample using JASP for Audit.

This example uses the sampling workflow within the Audit module. However,
the stages of the sampling workflow described below (with the exception of the
execution stage) are also separately available in JASP for Audit.

5This numerical example is partially taken from Kloosterman (2018).
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6.3.2.1 Planning stage

In the planning stage, the auditor calculates a minimum sample size given the
purpose of the sample. At this stage, the auditor also reviews relevant information
collected during earlier stages of the audit. Note that information is relevant to
the auditor if it can be used to adjust the amount of audit information needed
to assess the misstatement in the population, for example, information about the
quality of the organization’s internal control systems. In a frequentist approach,
this information is typically incorporated into the analysis using the Audit Risk
Model (Voorhoeve, 2018). In the Bayesian approach, this information enters the
analysis via the prior distribution (de Swart et al., 2013; van Batenburg, 2018c;
Derks et al., 2021a).

The auditor begins the sampling workflow in the planning stage by calculating
the minimum number of units from the population to be audited, given their
expectation about the number of errors in the sample.

Figure 6.3: Snapshot of the planning stage in JASP for Audit for the audit of
internal declarations.

Figure 6.3 is a snapshot of the planning stage from the sampling workflow
in JASP for Audit for this example. On the left side of the screen, the graphical
interface is again displayed. After entering the performance materiality in absolute
(monetary) units in the top row, dragging the RekNr and geboekt variables into
the ‘ID’ and ‘Book Value’ boxes, and specifying the expected errors in the sample,
the minimum sample size is automatically calculated. On the right side of the
screen, as the auditor fills in the relevant options, the audit report automatically
appears. The standard table in the audit report shows that in this case the auditor
must select 66 items—none of which may contain a misstatement—to approve the
population with the required 95 percent certainty. In the interface, the auditor can
choose to expand the audit report with figures and tables to clarify the statistical
results. For example, a figure or table with descriptive statistics of the book
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values in the population can be added to the audit report, or the auditor can
compare the minimum sample size under di↵erent probability distributions. With
the calculated sample size in hand, the auditor continues the sampling workflow
to the selection stage.

6.3.2.2 Selection stage

The auditor uses the minimum sample size calculated in the planning stage as
input for the selection stage. In this second stage of the sampling workflow, a
number of representative units from the population are selected in a statistically
sound manner to be audited.

When selecting a statistical sample, an auditor generally needs to make three
choices. First, it is important to specify which units are to be drawn from the
population, the so-called sampling units. If the auditor decides to select at the
item level it is called record sampling, at the euro level this is called monetary unit
sampling (Leslie et al., 1979). Second, the auditor must choose the method by
which the sampling units are drawn from the population. Drawing sampling units
is typically done through one of three standard methods: fixed interval selection,
cell selection, or random selection (van Batenburg, 2018d), see Figure 6.4. A third
choice the auditor needs to make is whether there is a particular order to the items
in the population, which lowers the representativeness of the sample. To ensure
that there is no pattern present in the items, the auditor may choose to randomize
the order of the items in the population prior to the selection procedure.

Figure 6.4: Illustration of the three common audit sampling algorithms imple-
mented in JASP for Audit. The box on the left displays a random sampling
algorithm in which each sampling unit is selected at random. The box in the
middle displays a fixed interval algorithm with interval I in which the interval i
between the selected units remains constant. The box on the right displays a cell
sampling algorithm in which the interval I remains the same, but the interval i
varies.

Figure 6.5 is a snapshot of the selection stage from the sampling workflow
in JASP for Audit. An appropriate sample is automatically drawn without the
auditor having to adjust options in the interface. Under the sampling units option,
monetary units is checked in this example. This choice is made under the hood
by JASP for Audit based on the options provided in the planning stage. In the
interface, the auditor can specify the method for selecting the sampling units (i.e.,
euros). By default, this method is set to fixed interval selection where the first
sampling unit from each interval is selected. In this example, the auditor chooses
to randomize the order of the items for safety. The standard table in the audit
report indicates that, with a fixed interval of e2,333,333 / 66 = e35,353.54, 66
euros distributed among 66 items were selected. The same table shows that with
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Figure 6.5: Snapshot of the selection stage in JASP for Audit for the audit of
internal declarations.

this sample, 9.57 percent of the total value of the population is audited. Again,
the auditor can use the options in the interface to expand the audit report. For
example, the auditor can choose to include a table in the audit report with all
selected items and any relevant characteristics of these items. With the selection
of items to be audited in hand, the auditor continues the workflow to the execution
stage.

6.3.2.3 Execution stage

After the auditor has selected the required items from the population, the audit
is performed. In this stage of the audit, the auditor inspects the selected items
and determines whether they contain a misstatement. Subsequently, the auditor
enriches the sample data with the results of their audit. Here, it is important to
make explicit in what way a misstatement is defined: Either an item is entirely
misstated as soon as it contains a misstatement (regardless of the size of the
misstatement), or an item is partially misstated if it contains a misstatement.

Figure 6.6 is a snapshot of the execution stage from the sampling workflow
in JASP for Audit. In the interface, the auditor can choose to annotate the
selected items in two ways: as correct or incorrect (full misstatements) or with
an audited (true) value (partial misstatements). In the example, the auditor
chooses to annotate the items with their true values. After selecting this option,
the auditor can adjust the two fields with column names. The first column will
contain the result of the selection procedure. In the second column, the auditor
can enter the true values of the items in the sample. After adding these columns
to the data set by means of the ‘Insert Variables’ button, a data editing window
opens in the interface containing the items in the sample. In this window, the
auditor can annotate the items by filling in their true values. In the example, the
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Figure 6.6: Snapshot of the execution stage in JASP for Audit for the audit of
internal declarations.

auditor finds four misstatements in the sample. Table 6.2 is a summary of these
four observed misstatements and their properties (Kloosterman, 2018, p. 38).

With the annotated items in hand, the auditor continues the workflow to the
evaluation stage.

6.3.2.4 Evaluation stage

The auditor uses the annotated items that follow from the execution stage as
input for the evaluation stage. In this stage of the sampling workflow, the auditor
extrapolates the (possibly) found misstatements in the sample to the population
while taking into account the audit risk. Here the auditor faces the choice of how
to project the sample results to the population.
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Table 6.2: Summary of the four misstatements observed in the sample. The table
is taken from Kloosterman (2018). The true values of the items have been added
for clarification.

RekNr Geboekt Misstatement True value Conclusion
47500 e1,364.52 e87.50 e1,277.02 e87.50 private expense, no cost
41400 e32,971.81 e9,354.10 e23,617.71 Asset Maintenance, 1

3 to be capitalized
40250 e159.20 e19.11 e140.09 e19.11 private expense, no cost
15230 e3,250.00 e3,250.00 e0.00 Incorrectly not activated

Figure 6.7: Snapshot of the evaluation stage in JASP for Audit for the audit of
internal declarations.

Figure 6.7 is a snapshot of the evaluation stage from the sampling workflow in
JASP for Audit. In the interface, an appropriate evaluation method for monetary
statements is automatically selected, in this case the commonly used Stringer
bound (Bickel, 1992). The auditor only needs to drag the variable containing
the true values to the ‘Audit Value’ box, after which the statistical evaluation
of the sample takes place automatically. The standard table in the audit report
shows that the most likely misstatement amount in the population is equal to
e51,894.14. The upper limit of the one-sided 95 percent confidence interval for this
misstatement amount is e186,772.406. The audit report contains the statistical
interpretation of these results and the conclusion in relation to the purpose of
the sample. The auditor can select options in the interface to expand the audit
report, for example, a figure comparing the performance materiality, the most
likely error, and the 95 percent upper bound on the population misstatement. In
this case, the auditor has obtained insu�cient and inappropriate audit evidence
to conclude that the misstatement in the population is below e105,000 with 95
percent certainty and must therefore conclude that the declarations contain a

6See Appendix 6.A for the calculations underlying these results.
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material misstatement.
To conclude the sampling workflow in JASP for Audit, the audit report can

be exported to di↵erent formats (e.g., .pdf, .html) and the analysis can be saved
locally as a .jasp file. The auditor can then share this file with the statistician
for verification of the data and options, who can then send it to management to
communicate the sample results in an understandable way via the audit report.

6.3.3 Testing the correctness of taxes

As a final example, we will reproduce the results of a sample that was recently at
the center of an appeal case at the Court of Appeal of ’s-Hertogenbosch (Buiten-
huis, 2022). An auditor of the Tax Administration initiated an investigation into
corporate income tax, sales tax and payroll taxes, using, among other things, a
monetary unit sample in accordance with the Tax Administration’s audit approach
(Belastingdienst, 2021). The stakeholder had claimed an amount of e2,812,567 in
total expenses. With a materiality of e120,000 and an expectation of zero errors,
this leads to a sample size of 717 in the planning stage of JASP for Audit. In
the selection stage of JASP for Audit, the required sample can be selected by
loading the population file with the expenditures, indicating the amount of the
expenditures as the book value, and checking the cell sampling method preferred
by the Tax Administration (Belastingdienst, 2021). During the execution stage,
three misstatements were identified with an accumulated misstatement fraction
of 1.89. After the true values are added to the sample list during the execution
stage, JASP for Audit generates the report of the entire workflow in the evaluation
stage. See Figure 6.8 for the evaluation section from this report. It can be seen
that the upper limit at e229,536 is greater than the materiality of e120,000, that
the expenses cannot be approved and that the most likely misstatement (i.e., the
consequential loss of taxes expressed in base euros) is e73,830.

6.4 Conclusions and recommendations

This chapter introduced JASP for Audit, open-source software developed to sup-
port auditors in responsibly planning, selecting and evaluating their statistical
samples. It has been argued that this software can provide a bridge between au-
ditors and statisticians by providing four features that are beneficial to the audit
practice. In addition, JASP for Audit provides a unique opportunity for collabo-
ration for auditors, accounting firms, universities and business schools in the field
of statistical auditing. Because the source code is open-source, the latest scientific
developments and recommendations from practitioners can be quickly incorpo-
rated into the software. This makes state-of-the-art sampling techniques available

7Note that there are small di↵erences between values in Buitenhuis (2022) and the values
generated with JASP for Audit. The Tax Administration assumes a sample size of 72 and
a rounded sample interval of e40,000. JASP for Audit assumes an exact sample interval of
e39,063. This causes a small di↵erence in the calculated correction. For the evaluation, both
the Tax Administration and JASP for Audit use the Stringer bound method, which depends
on the individual misstatement fractions. These are not given in Buitenhuis (2022) and are
simulated as 0.5, 0.5, and 0.89 for convenience. Because of this, the resulting upper bounds are
also slightly di↵erent.
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Figure 6.8: Evaluation report in JASP for Audit for the tax audit example.

to every auditor, which will improve the quality of audits overall. JASP for Audit
streamlines the sampling process for auditors so they can focus on the core tasks
in an audit.

Since new software is not easily adopted, we mention here some recommen-
dations for the use of JASP for Audit in the auditing practice. First, reference
can be made to the validation of statistical outcomes. For example, this thesis
contains several chapters and appendices using JASP for Audit that can be used
to substantiate adoption of the software. In addition, the statistical results from
the software are regularly validated against other audit software and the results
of these procedures are also open-source8.

8These so-called unit tests can be found at https://github.com/koenderks/jfa/actions/
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6.4. Conclusions and recommendations

In short, JASP for Audit can be a valuable addition to the audit software
curriculum. The hope is that JASP for Audit will help increase the quality of
audits and reduce the time and money spent per audit.

workflows/r.yml and https://github.com/jasp-stats/jaspAudit/actions/workflows/
unittests.yml.
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6.A Calculations Stringer bound

In the example, a sample of n = 66 euros was drawn from a population of N =
2, 333, 333.00 euros. The auditor found k = 4 misstatements (see Table 6.2). The
audit risk is set at ↵ = 0.05. In the example, the auditor is interested in the most
likely misstatement amount in the population and the 95 percent upper limit for
this misstatement amount.

Using the booked value yi and the actual value xi, the auditor first calcu-
lates the proportional misstatement (taint) per euro, ti, in the sample, see Equa-
tion 6.A.1.

ti =
yi � xi

yi
(6.A.1)

These taints are respectively t1 = 0.06412511, t2 = 0.28369992, t3 = 0.12003769,
and t4 = 1 for the misstatements in Table 6.2. The probability of misstatement
per euro in the sample can then be calculated using Equation 6.A.2.

✓mle =

Pn
i=0

ti
n

=
1.467863

66
= 0.02224034 (6.A.2)

The most likely amount of misstatement in the population is calculated by
multiplying the probability of misstatement per euro ✓mle by the total value of the
population N , see Equation 6.A.3.

✓mle ⇥N = 0.02224034⇥ 2.333.333, 00 = 51, 894.14 (6.A.3)

The upper bound for the misstatement amount is determined using the Stringer
bound (Touw and Hoogduin, 2012, pp. 190–194)9. The Stringer bound is a statis-
tical upper bound for the probability of misstatement per euro and is calculated
using Equation 6.A.4 (Bickel, 1992).

p(0; 1� ↵) +
kX

i=0

[p(i; 1� ↵)� p(i� 1; 1� ↵)]⇥ ti (6.A.4)

In Equation 6.A.4, p(i; 1�↵) is the 1�↵ upper bound for at most i misstatements
in n items according to the binomial distribution (Clopper and Pearson, 1934). It
is equivalent to the 1� ↵ percentile of a Beta(1 + i, n� i) distribution (Pearson,
1934). For an error-free sample, the upper bound for ✓ therefore simply equals
1�↵

1
n . When calculating the Stringer bound in the case of found misstatements,

9Note that the Stringer bound can be computed using both the Poisson distribution and the
binomial distribution. Touw and Hoogduin (2012) assume Poisson. Because especially for larger
error fractions the binomial distribution gives sharper upper bounds, JASP for Audit assumes
the binomial distribution as described in Bickel (1992).
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the taints are placed in descending order in the formula. The complete formula
for the Stringer bound in the example is given in Equation 6.A.5.

p(0; 0.95) + [p(1; 0.95)� p(0; 0.95)]⇥ t4 (6.A.5)

+ [p(2; 0.95)� p(1; 0.95)]⇥ t2

+ [p(3; 0.95)� p(2; 0.95)]⇥ t3

+ [p(4; 0.95)� p(3; 0.95)]⇥ t1

Filling in this formula (without any rounding) gives a 95 percent upper bound ✓95
for the probability of misstatement per euro ✓ of 0.08004531, rounded 8 percent
of the total value of the population. The 95 percent upper bound on the amount
of misstatement in the population is calculated by multiplying the 95 percent
upper bound on the probability of misstatement per euro by the total value of the
population N , see Equation 6.A.6.

✓.95 ⇥N = 0.08004531⇥ 2.333.333, 00 = 186, 772.40 (6.A.6)

6.B The ‘jfa’ R package

The ‘jfa’ package is open-source software for the programming language R (R Core
Team, 2022) that provides the statistical audit sampling methods implemented in
JASP for Audit (Derks et al., 2021b). The package provides an intuitive work-
flow for planning, performing, evaluating, and reporting a statistical audit sam-
ple compliant with international auditing standards (International Auditing and
Assurance Standards Board (IAASB), 2018; Public Company Accounting Over-
sight Boards (PCAOB), 2020; American Institute of Certified Public Accountants
(AICPA), 2021). Next to the frequentist audit sampling methodology, the package
implements Bayesian equivalents of these methods whose statistical underpinnings
are described throughout this thesis. The ‘jfa’ package is the first R package that
implements every step in the statistical audit sampling workflow10. This appendix
illustrates the functionality of the ‘jfa’ package using the three practical examples
described in this chapter.

6.B.1 Installation

Before the reader can start to reproduce the examples in this chapter, it is required
to first install the ‘jfa’ package from the CRAN repository11 and subsequently load
the package in the current R session. The following R code downloads the package
directly from CRAN via a call to install.packages and loads the package via a
call to library.

10The R package ‘audit’ implements evaluation of audit samples and the r package ‘MUS’
implements planning and evaluation of audit samples.

11See https://cran.r-project.org/package=jfa for the CRAN repository of the ‘jfa’
package.

189

https://cran.r-project.org/package=jfa


6. JASP for Audit: Statistical Tools for the Auditing Practice

install.packages("jfa") # Download the package from CRAN
library(jfa) # Load the package in the R session

6.B.2 Intended workflow

Auditors generally have a four-stage approach to audit sampling. This approach
consists of (1) planning a minimum required sample size, (2) selecting the planned
number of sampling units from the population, (3) executing the tests of details,
and (4) evaluating the misstatement in the sample to perform inference about
the population misstatement. The ‘jfa’ package provides an intuitive workflow
that fits seamlessly into this four-stage approach to audit sampling. Concretely,
the package provides four main functions to the auditor; planning, selection,
evaluation, and report. Additionally, it provides the function auditPrior to
create a prior distribution for use in Bayesian audit sampling. Since providing
an e�cient workflow is one of the goals of the package, the output obtained from
functions in the workflow can be used directly as input arguments for subsequent
functions in the workflow. Figure 6.9 shows the intended workflow of the package,
and highlights how it facilitates auditors’ four-stage approach to audit sampling.

planning()

auditPrior()

jfaPrior

selection()

evaluation()

report()

jfaPlanning

jfaEvaluation

jfaSelection

jfaPosterior

Figure 6.9: The figure displays the intended workflow in the ‘jfa’ package. Rectan-
gles represent functions and circles indicate objects returned from these functions.
Functions and objects with dotted lines are available when performing a Bayesian
analysis.
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6.B.3 Example 1: Sample sizes for internal controls testing

Calculating a minimum sample size for internal controls testing can be achieved via
the planning function. In general, the auditor needs to supply to the planning
function four parameters that are readily available: the performance materiality
(argument materiality), the expected errors in the sample (argument expected),
the likelihood of the data (argument likelihood), and the required confidence
level (argument conf.level). Optionally, a prior distribution created using the
auditPrior function can be specified (argument prior) to perform Bayesian plan-
ning using the specified prior distribution. Given the inputs, the planning func-
tion returns an object of class jfaPlanning containing the input options and the
statistical results, including the minimum required sample size.

6.B.3.1 Frequentist approach

We first reproduce the first example in the chapter using the frequentist approach
implemented in ‘jfa’. For the first control in Table 6.1, the auditor wants to
calculate a sample size such that, when at most 2 percent errors are found in the
sample, they can be 90 percent confident that the misstatement in the population
is lower than the performance materiality of 5 percent. The corresponding sample
size is 132, see American Institute of Certified Public Accountants (AICPA) (2019,
Appendix A). The R code below computes this sample size.

# Control 1
planning(materiality = 0.05, expected = 0.02, conf.level = 0.90,

likelihood = "binomial")

# Classical Audit Sample Planning
#
# minimum sample size = 132
# sample size obtained in 133 iteration(s) via method "binomial"

Second, for the second control in Table 6.1, the auditor wants to calculate a
sample size such that, when at most 1.5 percent errors are found in the sample,
they can be 95 percent confident that the misstatement in the population is lower
than the performance materiality of 4 percent. The corresponding sample size
is 192, see American Institute of Certified Public Accountants (AICPA) (2019,
Appendix A). The R code below computes this sample size.

# Control 2
planning(materiality = 0.04, expected = 0.015, conf.level = 0.95,

likelihood = "binomial")

# Classical Audit Sample Planning
#
# minimum sample size = 192
# sample size obtained in 193 iteration(s) via method "binomial"

Third, for the third control in Table 6.1, the auditor wants to calculate a sample
size such that, when at most 0.5 percent errors are found in the sample, they can
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be 95 percent confident that the misstatement in the population is lower than the
performance materiality of 3 percent. The corresponding sample size is 157, see
American Institute of Certified Public Accountants (AICPA) (2019, Appendix A).
The R code below computes this sample size.

# Control 3
planning(materiality = 0.03, expected = 0.005, conf.level = 0.95,

likelihood = "binomial")

# Classical Audit Sample Planning
#
# minimum sample size = 157
# sample size obtained in 158 iteration(s) via method "binomial"

Finally, for the last control in Table 6.1, the auditor wants to calculate a sample
size such that, when at most 0.75 percent errors are found in the sample, they
can be 95 percent confident that the misstatement in the population is lower than
the performance materiality of 3 percent. The corresponding sample size is 208,
see American Institute of Certified Public Accountants (AICPA) (2019, Appendix
A). The R code below computes this sample size.

# Control 4
planning(materiality = 0.03, expected = 0.0075, conf.level = 0.95,

likelihood = "binomial")

# Classical Audit Sample Planning
#
# minimum sample size = 208
# sample size obtained in 209 iteration(s) via method "binomial"

6.B.3.2 Bayesian approach

In this subsection, a Bayesian approach is used to carry out the examples in the
chapter. In general, the input for the planning function does not di↵er between
the frequentist and Bayesian approaches, except that in the Bayesian approach
the auditor specifies a prior distribution via the prior argument.

The purpose of the auditPrior function is to create a prior distribution that
can be used as an input for the planning and evaluation functions. The default
option for these functions is prior = FALSE, which means that they will perform
a frequentist analysis. However, if the input for prior is an object created by the
auditPrior function, Bayesian analyses are performed using the specified prior
distribution. On the other hand, if prior = TRUE a uniform prior distribution
is specified under the hood. To illustrate the versatility of the package when it
comes to Bayesian inference for auditing, an informed prior distribution will be
used throughout the following reconstructions. Keep in mind that this means
that the sample sizes will be di↵erent from those obtained using the frequentist
approach. Suppose that the auditor has information that leads to a Beta(1, 19)
prior distribution. The following R code specifies this prior distribution.
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# Create a custom Beta(1, 19) prior distribution
prior <- auditPrior(method = "param", likelihood = "binomial",

alpha = 1, beta = 19)

First, the required sample size for the first control in Table 6.1 is calculated
using a Beta(1, 19) prior distribution. In contrast to the frequentist function call
to planning, this time the prior argument in the function is also specified. The
corresponding sample size is 68. The R code below computes this sample size.

# Control 1
planning(materiality = 0.05, expected = 0.02, conf.level = 0.90,

likelihood = "binomial", prior = prior)

# Bayesian Audit Sample Planning
#
# minimum sample size = 68
# sample size obtained in 69 iteration(s) via method "binomial" + "prior"

Second, the required sample size for the second control in Table 6.1 is calculated
using a Beta(1, 19) prior distribution. The corresponding sample size is 140. The
R code below computes this sample size.

# Control 2
planning(materiality = 0.04, expected = 0.015, conf.level = 0.95,

likelihood = "binomial", prior = prior)

# Bayesian Audit Sample Planning
#
# minimum sample size = 140
# sample size obtained in 141 iteration(s) via method "binomial" + "prior"

Third, the required sample size for the third control in Table 6.1 is calculated
using a Beta(1, 19) prior distribution. The corresponding sample size is 114. The
R code below computes this sample size.

# Control 3
planning(materiality = 0.03, expected = 0.005, conf.level = 0.95,

likelihood = "binomial", prior = prior)

# Bayesian Audit Sample Planning
#
# minimum sample size = 114
# sample size obtained in 115 iteration(s) via method "binomial" + "prior"

Finally, the required sample size for the last control in Table 6.1 is calculated
using a Beta(1, 19) prior distribution. The corresponding sample size is 140. The
R code below computes this sample size.

# Control 3
planning(materiality = 0.03, expected = 0.0075, conf.level = 0.95,

likelihood = "binomial", prior = prior)
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# Bayesian Audit Sample Planning
#
# minimum sample size = 140
# sample size obtained in 141 iteration(s) via method "binomial" + "prior"

6.B.4 Example 2: Auditing internal declarations

This second example utilizes the full audit sampling workflow in ‘jfa’. First, the
population data (available in the online appendix at https://osf.io/2v7mw/) is
loaded into the R session. Next, the total number of euros in the population is
stored as a separate variable, since it is required later in the analysis. The R code
below performs these two actions.

# Read in population and total value of the population
population <- read.csv("https://osf.io/r47ap/download")
N.units <- sum(population$geboekt)

N.units # Total number of euros in the population = 2333333

6.B.4.1 Frequentist approach

First, using the planning function the minimum sample size for a performance
materiality of 105000 / 2333333 = 0.045 percent is calculated for zero tolerable
errors. This results in a sample size of 66 euros to inspect. The R code below
computes this sample size.

planning <- planning(materiality = 105000 / N.units,
likelihood = "binomial")

summary(planning)

# Classical Audit Sample Planning Summary
#
# Options:
# Confidence level: 0.95
# Materiality: 0.045
# Hypotheses: H0: ✓ >= 0.045 vs. H1: ✓ < 0.045
# Expected: 0
# Likelihood: binomial
#
# Results:
# Minimum sample size: 66
# Tolerable errors: 0
# Expected most likely error: 0
# Expected upper bound: 0.044375
# Expected precision: 0.044375
# Expected p-value: < 2.22e-16
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Second, the 66 required euros are selected from the population using the selection
function. The R code below selects these 66 units from the population.

# IMPORTANT: JASP uses the default rng in R versions prior to 3.6.0
suppressWarnings(RNGkind(sample.kind = "Rounding"))
set.seed(1)
selection <- selection(data = population, size = planning,

units = "values", values = "geboekt",
randomize = TRUE)

summary(selection)

# Audit Sample Selection Summary
#
# Options:
# Requested sample size: 66
# Sampling units: monetary units
# Method: fixed interval sampling
# Starting point: 1
#
# Data:
# Population size: 769
# Population value: 2333333
# Selection interval: 35354
#
# Results:
# Selected sampling units: 66
# Proportion of value: 0.095705
# Selected items: 66
# Proportion of size: 0.085826

sample <- selection$sample # Save the sample

Last, the annotated sample is evaluated using the Stringer bound (Bickel, 1992)
via the evaluation function. The R code below computes the statistical results.

evaluation <- evaluation(materiality = 105000 / N.units,
method = "stringer",
data = sample, values = "geboekt",
values.audit = "werkelijk")

summary(evaluation)

# Classical Audit Sample Evaluation Summary
#
# Options:
# Confidence level: 0.95
# Materiality: 0.045
# Method: stringer
#
# Data:
# Sample size: 66
# Number of errors: 4
# Sum of taints: 1.4678627
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#
# Results:
# Most likely error: 0.02224
# 95 percent confidence interval: [0, 0.080045]
# Precision: 0.057805

evaluation$mle * N.units # Most likely error in euros = 51894.14
evaluation$ub * N.units # 95% Upper bound in euros = 186772.4

6.B.4.2 Bayesian approach

In a Bayesian approach, the auditor must first specify a prior distribution using
the auditPrior function. For illustrative purposes, an improper Beta(1, 0) prior
distribution will be specified in this example because it yields an equivalent sample
size (and thus the same sample and found misstatements) as in the frequentist
approach, see Chapter 5. The R code below sets up the improper Beta(1, 0)
distribution.

# Create an improper Beta(1, 0) prior distribution
prior <- auditPrior(method = "strict", likelihood = "binomial")

Second, the minimum sample size is calculated by specifying the prior argu-
ment in the planning function. This results in the familiar 66 euros (like in the
frequentist example) to inspect. The R code below computes this sample size.

planning <- planning(materiality = 105000 / N.units,
likelihood = "binomial", prior = prior)

summary(planning)

# Bayesian Audit Sample Planning Summary
#
# Options:
# Confidence level: 0.95
# Materiality: 0.045
# Hypotheses: H0: ✓ >= 0.045 vs. H1: ✓ < 0.045
# Expected: 0
# Likelihood: binomial
# Prior distribution: beta(↵ = 1, � = 0)
#
# Results:
# Minimum sample size: 66
# Tolerable errors: 0
# Posterior distribution: beta(↵ = 1, � = 66)
# Expected most likely error: 0
# Expected upper bound: 0.044375
# Expected precision: 0.044375
# Expected BF10: Inf

Third, the 66 required units are selected from the population using the selection
function. This R code is the same as in the frequentist example and therefore it
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is omitted here. As a result, the resulting sample is also the same. Finally, the
sample is evaluated using the beta distribution by specifying the prior argument
in the evaluation function. The R code below computes the statistical results.

evaluation <- evaluation(materiality = 105000 / N.units,
method = "binomial", prior = prior,
data = sample, values = "geboekt",
values.audit = "werkelijk")

summary(evaluation)

# Bayesian Audit Sample Evaluation Summary
#
# Options:
# Confidence level: 0.95
# Materiality: 0.045
# Hypotheses: H0: ✓ >= 0.045 vs. H1: ✓ < 0.045
# Method: binomial
# Prior distribution: beta(↵ = 1, � = 0)
#
# Data:
# Sample size: 66
# Number of errors: 4
# Sum of taints: 1.4678627
#
# Results:
# Posterior distribution: beta(↵ = 2.468, � = 64.532)
# Most likely error: 0.022582
# 95 percent confidence interval: [0, 0.080622]
# Precision: 0.058039
# BF10: Inf

evaluation$mle * N.units # Most likely error in euros = 52692.51
evaluation$ub * N.units # 95% Upper bound in euros = 188117.9

6.B.5 Example 3: Tax audit

As a final example, we reproduce the tax audit example from the chapter. First,
the population data (available in the online appendix at https://osf.io/2v7mw/)
is loaded into the R session. Next, the total number of euros in the population is
calculated and stored in a separate variable, since it is required at a later stage.
The R code below performs these two actions.

# Read in population and total booked value
population <- read.csv("https://osf.io/7sdn4/download",

sep = ";", dec = ",")
N.units <- sum(population$book)

N.units # Total number of euros in the population = 2812567
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6.B.5.1 Frequentist approach

In the frequentist approach, the sample is evaluated using the Stringer bound
(Bickel, 1992). The R code below computes the statistical results.

evaluation <- evaluation(materiality = 120000 / N.units,
method = "stringer",
data = population, values = "book",
values.audit = "audit")

summary(evaluation)

# Classical Audit Sample Evaluation Summary
#
# Options:
# Confidence level: 0.95
# Materiality: 0.042666
# Method: stringer
#
# Data:
# Sample size: 72
# Number of errors: 3
# Sum of taints: 1.89
#
# Results:
# Most likely error: 0.02625
# 95 percent confidence interval: [0, 0.081611]
# Precision: 0.05536

evaluation$mle * N.units # Most likely error in euros = 73829.88
evaluation$ub * N.units # 95% Upper bound in euros = 229535.1

6.B.5.2 Bayesian approach

In the Bayesian approach, the sample is evaluated using the beta distribution.
For this example, an impartial prior distribution is specified, see Chapter 5. The
R code below sets up the impartial beta prior distribution for a performance
materiality of 0.042666.

# Create an impartial beta prior distribution
prior <- auditPrior(method = "impartial", likelihood = "binomial",

materiality = 120000 / N.units)

Next, the sample is evaluated using the impartial prior distribution by specify-
ing the prior argument in the evaluation function. The R code below computes
the statistical results.

evaluation <- evaluation(materiality = 120000 / N.units,
method = "binomial", prior = prior,
data = population, values = "book",
values.audit = "audit")

summary(evaluation)
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# Bayesian Audit Sample Evaluation Summary
#
# Options:
# Confidence level: 0.95
# Materiality: 0.042666
# Hypotheses: H0: ✓ >= 0.042666 vs. H1: ✓ < 0.042666
# Method: binomial
# Prior distribution: beta(↵ = 1, � = 15.897)
#
# Data:
# Sample size: 72
# Number of errors: 3
# Sum of taints: 1.89
#
# Results:
# Posterior distribution: beta(↵ = 2.89, � = 86.007)
# Most likely error: 0.02175
# 95 percent confidence interval: [0, 0.068085]
# Precision: 0.046335
# BF10: 3.0084

evaluation$mle * N.units # Most likely error in euros = 61173.06
evaluation$ub * N.units # 95% Upper bound in euros = 191493.3
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Chapter 7

Discussion and Future Directions

In this thesis, I have argued that auditors should adopt Bayesian inference into
their statistical toolbox. When compared to the currently dominant frequentist
methodology, Bayesian methods can provide auditors with many practical bene-
fits. In particular, the preceding chapters have outlined the arguments in favor of
the Bayesian approach in a modern auditing context, they have discussed the de-
velopment of new Bayesian statistical methods, and they have described how the
accessibility of Bayesian methods for auditing has been improved via open-source
software. In sum, this thesis aimed to develop an innovative approach to statistical
auditing that elevates the field to the Bayesian methodological standards currently
upheld in other scientific disciplines (van de Schoot et al., 2021).

The first part of this thesis focused on Bayesian parameter estimation, demon-
strating how pre-existing information can be incorporated into the prior distribu-
tion and the statistical model. The central message of this part is that integrating
pre-existing information into the statistical analysis can help auditors to set up an
e�cient procedure and provide a transparent opinion because it is specifically tai-
lored to the audit and the auditee. The second part of this thesis covered Bayesian
hypothesis testing and advocated the use of the Bayes factor as a gauge for audit
evidence. The main takeaway from this part is that Bayesian hypothesis testing
using the Bayes factor o↵ers practical advantages over the standard frequentist
approach, and that the interpretation of the Bayes factor closely resembles the
conclusions that auditors want to draw from their samples. The final part dis-
cussed JASP for Audit, an open-source software implementation of the discussed
audit sampling methodology, and demonstrated how it can aid the auditor in
planning, performing, evaluating, and reporting a (Bayesian) audit sample.

In the remaining parts of this discussion, I will go over the main contributions
of this thesis to the field of auditing and suggest possible directions for further
research or development.

7.1 Contributions to auditing

This thesis makes three main contributions to audit theory and practice:
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• It explains and demonstrates the practical benefits of Bayesian inference in
a modern auditing context;

• It develops innovative Bayesian techniques that can be tailored to real-world
audit situations;

• It improves the accessibility of Bayesian methodology to auditors via open-
source software.

These three contributions may be useful to a wide range of stakeholders of the
audit, including those responsible for developing auditing standards and method-
ologies; practitioners interested in conducting e↵ective and e�cient audits; and
academics involved in auditing research.

7.1.1 Benefits of Bayesian inference

The first goal of this thesis was to promote the use of Bayesian statistics in the
auditing profession. It has long been argued that auditors can benefit practically
from using Bayesian statistics to analyze their samples. However, these Bayesian
benefits are seldom known to auditors, or are di�cult to make use of in practice.
Furthermore, over the years, the body of fundamental literature outlining the
Bayesian benefits for auditing has unfortunately become outdated and therefore
di�cult to relate to for auditors in practice. For this reason, the chapters in this
thesis modernize, and expand upon, the arguments in favor of Bayesian inference
made by scholars in the mid-to-late twentieth century.

Chapter 2, Chapter 3, and Chapter 4 have outlined the advantages of Bayesian
parameter estimation and hypothesis testing in a modern auditing context. Four
main advantages have been put forward. To sum up, Bayesian inference provides
auditors with a relatively simple interpretation of statistical results; it enables
statistical conclusions to be easily extended to any level of complexity; it increases
transparency towards stakeholders of the audit; and, finally, it can help auditors
work more e�ciently. Particularly in today’s audits that are subject to close
scrutiny and time pressure, Bayesian inference can make it easier for auditors to
accomplish their goals.

Of course, there is a trade-o↵ that auditors need to make. While a Bayesian
analysis can improve transparency and e�ciency, the justification of a Bayesian
analysis takes time and e↵ort on the part of the auditor. Information that is
incorporated into the prior distribution or the statistical model should be properly
justified, which means that the auditor must carefully consider the pros and cons
of the Bayesian approach to determine if its benefits will outweigh the time and
e↵ort required to set up and justify a Bayesian analysis. Chapter 2 and Chapter 3
have discussed how to weigh these pros and cons in detail.

I hope that by discussing the benefits and drawbacks of Bayesian inference in
a modern auditing context, I have made a convincing case for the use of Bayesian
statistics in auditing theory and practice.
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7.1.2 Development of Bayesian techniques

The second goal of this thesis was to develop innovative Bayesian statistical tech-
niques for audit sampling. Auditors need easy-to-use statistical tools in order to
use Bayesian statistics in their fieldwork. Chapter 5 describes the development of
a default Bayesian hypothesis test for audit sampling which uses an impartial prior
distribution. The impartial prior distribution is useful for auditors because it is
simple to justify (i.e., it corresponds to the assumption that intolerable misstate-
ment is equally likely as tolerable misstatement before seeing data) and because it
can take into account pre-existing information that is familiar in an audit sampling
context (e.g., the most likely expected misstatement). The statistical motivation
for the impartial prior distribution is that the corresponding Bayes factor has de-
sirable properties, that is, the Bayes factor will always quantify evidence in the
direction supported by the data. Since it is also easy to calculate, the impartial
Bayes factor can be a useful benchmark method or entry-level statistical tool for
auditors to quantify audit evidence.

I hope that by creating an easy-to-use Bayesian hypothesis test, I have made a
convincing case for the use of the Bayes factor when it comes to hypothesis testing
in auditing theory and practice.

7.1.3 Accessibility of Bayesian methodology

The third goal of this thesis was to improve the accessibility of Bayesian meth-
ods to auditors via open-source software. In order for auditors to use Bayesian
techniques in practice, they must have access to these tools at any time. A viable
solution for improving auditors’ access to Bayesian techniques is to implement
these techniques in open-source software. Chapter 6 has discussed the develop-
ment of JASP for Audit, an open-source software implementation of the Bayesian
auditing framework for parameter estimation and hypothesis testing discussed in
the preceding chapters. JASP for Audit has a number of design principles that
are relevant for auditors in practice. For example, it o↵ers both frequentist and
Bayesian techniques; the user interface is designed for auditing and therefore user-
friendly; and the software automatically makes the correct statistical choices and
generates an audit report containing an explanation of the statistical results. This
approach aims to minimize the dependency on an auditor’s statistical knowledge,
while increasing their understanding of the statistical theory underlying the audit
process. By programming the fundamental Bayesian techniques for audit sam-
pling into freely accessible software, this thesis ensures that any auditor is able to
use Bayesian techniques in their audit at all times.

JASP for Audit has already proven to be a welcome addition to the audit soft-
ware curriculum, as it is used in academic textbooks (e.g., Strang, 2022, Chapter
2), university courses and workshops. Additionally, we are working to expand
JASP for Audit in partnership with departments of the Dutch government (Au-
ditdienst Rijk, Uitvoering van Beleid SZW). While it is impossible to say how
many times the implementation in JASP has been downloaded so far, the imple-
mentation in R has been downloaded over 21,000 times, further demonstrating
that the output of this project has been useful for many auditors in practice.
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I hope that by making the Bayesian techniques covered in this thesis accessible
to all auditors, I have made a convincing case for the use of open-source software,
particularly JASP for Audit, in auditing theory and practice.

7.2 Opportunities for further research and development

Because this thesis mainly covers the foundational concepts of Bayesian inference
in auditing, there is a wide range of areas for future research and potential devel-
opment. In this section I will focus on three research directions that are worth
following up on.

7.2.1 Further development of Bayesian methodology

This thesis lays the groundwork for the improvement of auditing theory as well
as the development of more sophisticated Bayesian statistical methodology. Re-
search into this area can potentially lead to a further increase of transparency and
e�ciency in the audit.

First, further research could enhance the methodological toolbox for Bayesian
parameter estimation in an audit context. With regard to parameter estimation,
this thesis concentrated on how to incorporate pre-existing information into the
prior distribution and the statistical model. However, it does not fully discuss
how to take advantage of the other benefits o↵ered by Bayesian inference, such
as sequential sampling (Rouder, 2014). Sequential sampling allows auditors to
modify their sampling procedures as new information becomes available, however,
how to select the best samples has not been looked into. For instance, the auditor
could use sequential sampling—–choosing and auditing the item that will provide
them with the most information (e.g., the largest reduction in uncertainty) each
time. Further research into this idea is warranted as it can lead to an increase in
e�ciency. Additionally, the thesis makes no mention of the practice of estimating
parameters when multiple statistical models are viable. Through Bayesian model
averaging (Hinne et al., 2020), Bayesian inference can take into account the un-
certainty about the composition of the model. In this approach, the auditor does
not need to explicitly choose which model to use because estimates from various
models can be averaged according to how well the models describe the data. The
viability of this strategy in the context of audit sampling is worth investigating in
more detail.

Second, additional research may enhance the statistical methodology available
for Bayesian hypothesis testing in an audit context. In terms of testing hypotheses,
this thesis has covered the fundamental concept underlying the Bayes factor and
demonstrated how to compute it for typical auditing scenarios. The Bayes factor,
however, has a wide variety of other applications that this thesis has not covered.
For instance, it does not discuss how to compute the Bayes factor for the hy-
pothesis of (in)tolerable misstatement in more intricate (e.g., multilevel) models.
Future research could outline the properties of these Bayes factors, explain how to
calculate them in complex models, and discuss the considerations that come with
using them in an audit setting. Needless to say, these Bayes factor calculations
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also need to be made available in open-source software. Furthermore, by carrying
out a Bayes factor design analysis (Schönbrodt and Wagenmakers, 2018), auditors
can also use the Bayes factor to create a batched sample that provides as much
evidence as possible. Finally, the Bayes factor is not limited to supporting a spe-
cific claim about the misstatement but can also be used to determine the relative
strength of evidence for two statistical models used in estimating the misstatement
in a population (Fragoso et al., 2018). Because of this, the Bayes factor can aid
the auditor in choosing which model to apply in the sample evaluation. Although
such Bayes factor computations are already available in JASP (van den Bergh
et al., 2021), there has not been any discussion of them in the auditing literature.

Third, this thesis mainly takes a bottom-up approach to stratified sampling
in auditing. It describes, for instance, how stratum estimates can be averaged to
arrive at a population estimate. When an auditor needs to move from data to
a conclusion, this bottom-up strategy is helpful. However, auditors often use a
top-down strategy to allocate performance materiality when planning a stratified
sample because it can help to minimize the required samples in each stratum.
Prior research has suggested a method for allocating performance materiality to
each stratum by decomposing the pursued population posterior distribution into
required stratum posterior distributions. However, this research mainly focuses
on the use of gamma distributions to represent independent strata (Sellke, 1983;
Stewart et al., 2007; Stewart, 2013). In this thesis, we mostly use beta distributions
as prior distributions because we believe they are easier to set up and interpret
for auditors. Furthermore, we introduce a multilevel structure into the model to
explicitly relate the strata to each other. The e↵ect of both of these changes on
the top-down approach to optimally allocate performance materiality has not been
investigated in the auditing literature and requires further study.

7.2.2 Further investigating the role of the prior distribution

This thesis o↵ers statistical techniques for using Bayesian statistics in an auditing
setting, but it does not look into the actual application of these techniques by
auditors and the consistency of statistical results across auditors. The nature of
Bayesian inference makes it likely that prior distributions and statistical results
will di↵er among auditors. Investigating what gives rise to these di↵erences and
mapping them is important because it can give an impression of the variation in
the process of obtaining audit evidence among auditors and audit firms. Having
this insight can assist audit standard-setters in o↵ering recommendations to prac-
titioners, for example regarding the minimal evidential strength of audit evidence.

First, future research could aim to map the variation in prior distributions and
resulting Bayes factors for (in)tolerable misstatement. Chapter 2 introduced five
methods to construct a prior distribution on the basis of pre-existing information.
However, based on how each auditor interprets the information available to them,
prior distributions (or prior probabilities) will likely di↵er amongst auditors. Fur-
ther research could quantify the variation in Bayes factors between auditors for
a given audit, giving an indication of the di↵erence in audit evidence between
individual auditors or audit firms. Such research has been conducted in the social
sciences (Stefan et al., 2022b), where it was examined whether or not various prior
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distributions alter the direction of the Bayes factor, whether or not they result in
a change in the category of evidence strength, and how much of an impact they
have on the value of the Bayes factor. In auditing, it is important to rule out that
such changes in professional judgment (and thus in the prior distribution) a↵ect
the decisions that are made based on an audit sampling procedure. Furthermore,
since the Bayes factor has not been discussed in the auditing literature before,
no research has been done into how auditors determine an appropriate evidence
threshold. Further research could map the di↵erent evidence thresholds used by
auditors and audit firms to gain an understanding about how much audit evidence
is su�cient in their eyes.

Second, future research could investigate how to elicit a prior distribution
from auditors’ professional judgment. Despite the fact that the later chapters of
this thesis emphasize the use of weakly informative prior distributions, Chapter 2
demonstrates that auditors can increase e�ciency by specifying an informed prior
distribution. However, auditors may not always have access to the information
that is used to set up and justify these prior distributions, but they might still want
to make a prior distribution based on their professional judgment or other audit
information. This requires the need for prior elicitation (O’Hagan et al., 2006), a
structured interview process designed for constructing a prior distribution based
on the knowledge of one or multiple experts (i.e., auditors). Because prior elicita-
tion is a structured process, it can help auditors to construct and justify a prior
distribution that aligns with the situation in practice under many circumstances.
However, prior elicitation comes with its own practical challenges (Stefan et al.,
2022a). For instance, what method should be used to elicit the prior distribu-
tion, which model parameters are of interest and thus call for prior elicitation,
and (how) should prior distributions from various auditors be combined? Further
research into these matters in the context of an audit is warranted.

Last but not least, it is crucial to keep statistical models understandable in or-
der to ensure that auditors can explain the results of their audits. The complexity
of the statistical model is not necessarily constrained by this, but it does necessi-
tate more practical guidance on the role of the prior distribution in more advanced
Bayesian models for auditing. In Chapter 3, we specified weakly informative prior
distributions mostly because it was more convenient. This made the prior distri-
bution play a more supporting role. Nonetheless, the prior distribution has an
impact on the results of the analysis, particularly for small sample sizes, and so it
remains important to consider its interpretation. However, in more complex (e.g.,
multilevel) Bayesian models, this can be relatively challenging. For instance, it
can be di�cult to determine what the prior distribution on a (set of) transformed
parameter(s) implies for the probability of misstatement. Further research into
this topic can clarify the role of the prior distribution in more complex models, as
well as how to construct them on the basis of pre-existing information and how to
interpret them in a statistically sound way.

7.2.3 Building capacity for statistical auditing

One of the major factors limiting the expansion of research in the field of statistical
auditing, and particularly in the area of Bayesian statistics, is the small number of
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researchers and professionals entering the field. As auditing firms can attest, the
number of clients they serve is growing and will continue to grow in the future,
necessitating the need for audits that are more e↵ective and e�cient. This means
that the role of data and statistical inference in auditing will only continue to grow
in the future. Unfortunately, there is currently not much capacity to develop and
apply innovative methods in this field.

It is therefore critical that interest in statistical methods among auditing re-
searchers and practitioners rises. In my opinion, our primary goals should be to
increase the general knowledge and competency of statistical methodology among
auditing students and practitioners; to broaden the guidance audit standard-
setters give regarding statistical inference; and to increase the accessibility of
complex statistical methodology to auditors. Of course, Bayesian statistics should
take center stage in this.

Furthermore, it is important to create new strategies for attracting and re-
taining capable researchers and practitioners. These strategies may be put into
place at di↵erent points along the career path, from the college years early on to
spark interest in the field of statistical auditing to the professional years later on
to retain the best researchers and practitioners. As history has shown, Bayesian
statistics can thrive in this field if a large enough community collaborates to ac-
tively promote it.

7.3 Concluding comments

The benefits and possibilities of Bayesian statistics that initially piqued the inter-
est of auditing researchers in the twentieth century are more relevant today than
they have ever been. The ability of computers to perform advanced calculations
continues to grow year after year, and as a result, the accessibility and complexity
of Bayesian techniques available to auditors grows as well. A number of practical
advantages currently lie at the auditor’s fingertips, yet many of them do not know
about—or find it di�cult to act upon—these opportunities and continue to evalu-
ate their samples in a familiar way. However, this thesis demonstrates that careful
consideration of the statistical framework on which auditors base their opinions
can unlock these practical benefits for auditors today.

Looking beyond the obvious, this thesis contains a more important message:
Auditors must consider how to get the most out of their data. In practice, this
means they should carefully consider the questions they want to address and decide
on the best approach to take in order to provide the best possible answers. Seen
from this perspective, I believe that applying Bayesian inference is merely a logical
decision that will help the auditor match the situation in practice as closely as
possible and provide a fitting answer to their questions. If this critical perspective
on analyzing data can find a foothold in auditing theory and practice, it is not
di�cult to predict that auditors will employ more complex statistical planning
and evaluation techniques in the near future.

Ultimately, the adoption of Bayesian methods rests with auditors in practice.
I hope that this thesis will act as a roadmap for those who are willing to use these
methods in the field.
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Summary

In this thesis, I make the case that auditors can benefit greatly by adopting
Bayesian statistics into their methodological toolbox. Auditors often use statisti-
cal sampling to e�ciently form an opinion about the misstatement in a population.
At this stage of the audit, they typically have access to pre-existing information
from earlier audit activities. However, the currently dominant frequentist tech-
niques for statistical audit sampling cannot make optimal use of this pre-existing
information. This is unfortunate because it means that much relevant information
is discarded during the statistical analysis. Bayesian statistics can incorporate the
pre-existing information into the statistical analysis in a responsible way, leading
to a potential decrease in uncertainty and an increase in e�ciency for the auditor.

The thesis has three objectives: First, it aims to advance Bayesian inference
in the auditing profession by updating its theoretical underpinnings and outlining
its key practical benefits; second, it seeks to develop innovative and simple-to-
use Bayesian statistical methods for parameter estimation and hypothesis testing
specifically tailored to audit sampling; and third, it seeks to make these techniques
openly available to all audit practitioners via user-friendly open-source statistical
software.

The first part of the thesis discusses Bayesian parameter estimation in audit
sampling, focusing on the use of pre-existing information. Chapter 2 introduces
the basic ideas behind Bayesian parameter estimation and covers how information
can be incorporated into the prior distribution. The key idea that this chapter
introduces is that the prior distribution enables auditors to statistically build upon
pre-existing information about the misstatement in their sampling procedures. In
this chapter, I go over how this has a number of practical benefits for the auditor,
including the potential for a smaller sample size and an increase in transparency.
In addition, the chapter presents five methods for creating a prior distribution in
the context of audit sampling. These prior distributions are created using famil-
iar audit information, enabling the auditor to justify them in a logical manner.
Chapter 3 builds on the fundamental ideas of Bayesian parameter estimation from
Chapter 2 and discusses how additional data can be incorporated into the statis-
tical model. The key idea introduced in this chapter is that the statistical model
enables auditors to statistically base their sampling procedures on multiple sources

229



Summary

of data. In this chapter, I go over how this has two benefits for auditors: First,
it helps them develop a more nuanced understanding of the population because
they can explain the impact of the integrated data; and second, it makes it eas-
ier for them to identify potential misstatements in the population because they
can more sharply di↵erentiate between items. The chapter uses two examples to
demonstrate how a Bayesian modeling approach can help the auditor develop a
statistical model that is aligned with the situation in practice.

The second part of the thesis discusses Bayesian hypothesis testing, focusing
on the quantification of statistical audit evidence. Chapter 4 discusses the con-
cept of audit evidence and introduces Bayesian hypothesis testing as a method for
quantifying such evidence from statistical samples. The key idea this chapter in-
troduces is that statistical audit evidence can be quantified via the Bayes factor, a
measure of relative evidence comparing two hypotheses being tested. It is demon-
strated in the chapter that frequentist hypothesis testing has a number of practical
drawbacks that Bayesian hypothesis testing using the Bayes factor can address.
The use of the Bayes factor is then illustrated in a number of scenarios from a
modern auditing context. Furthermore, Chapter 5 develops a default Bayesian
hypothesis test for audit sampling. The Bayes factor is sensitive to the specifi-
cation of the prior distribution, but the impact of prior on the Bayes factor has
not been previously investigated in the context of audit sampling. Unfortunately,
prior distributions that are tempting to use in the context of audit sampling can
produce Bayes factors that quantify evidence in the opposite direction to what the
data indicate. In order to address this issue, this chapter proposes an impartial
prior distribution. The resulting Bayes factor is consistent, that is, it will always
quantify evidence in favor of the hypothesis that is best supported by the data.
The key ideas in this chapter are that the impartial Bayesian hypothesis test is
appropriate in a variety of circumstances, that it is straightforward to use, and
that it is easy to justify.

The third part of this thesis discusses a software implementation of the Bayesian
statistical framework advocated in the preceding chapters. Improving the acces-
sibility of Bayesian statistical techniques for auditors was one of the goals of this
project. Because of this, JASP for Audit was created as an add-on module for the
existing software JASP, an open-source statistical program with a graphical user
interface. Chapter 6 gives an overview of JASP for Audit, which provides both
frequentist and Bayesian statistical techniques for audit sampling with the goal
of assisting auditors in the statistical aspects of an audit. It accomplishes this by
providing, among other analyses, a guided workflow that adheres to the familiar
four-step audit sampling process, performs the necessary statistical calculations,
and automatically produces an audit report containing the statistical results and
the interpretation of these results. This chapter discusses the benefits of JASP for
Audit for the auditing practice and o↵ers a thorough walkthrough of three real-
world examples. Furthermore, it provides recommendations for the use of JASP
for Audit in practice.

In sum, this thesis aims to develop an innovative approach to statistical au-
diting. By providing a full Bayesian framework for parameter estimation and hy-
pothesis testing and making these techniques freely available, this thesis ensures
that auditors can reap the benefits of Bayesian inference at all times.
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In dit proefschrift betoog ik dat auditors veel baat kunnen hebben bij het opnemen
van Bayesiaanse statistiek in hun methodologische gereedschapskist. Auditors ma-
ken vaak gebruik van statistische steekproeven om op e�ciënte wijze een oordeel te
vormen over de fouten in een populatie. In dit stadium van de controle hebben zij
meestal toegang tot reeds bestaande informatie uit eerdere controlewerkzaamhe-
den. De momenteel dominante frequentistische technieken voor statistische steek-
proeven kunnen echter niet optimaal gebruik maken van deze reeds bestaande
informatie. Dit is jammer, want het betekent dat veel relevante informatie tijdens
de statistische analyse buiten beschouwing wordt gelaten. Bayesiaanse statistiek
kan de reeds bestaande informatie op een verantwoorde manier in de statistische
analyse opnemen, wat leidt tot een potentiële afname van de onzekerheid en een
toename van de e�ciëntie voor de auditor.

Het proefschrift heeft drie doelen: Ten eerste beoogt het Bayesiaanse statistiek
in het auditberoep te bevorderen door het actualiseren van de theoretische onder-
bouwing en het schetsen van de belangrijkste praktische voordelen; ten tweede be-
oogt het innovatieve en eenvoudig te gebruiken Bayesiaanse statistische methoden
te ontwikkelen voor het schatten van parameters en het toetsen van hypothesen,
specifiek ontworpen voor steekproeven in een audit; en ten derde beoogt het deze
technieken openlijk beschikbaar te maken voor alle auditors via gebruiksvriende-
lijke open-source statistische software.

Het eerste deel van het proefschrift bespreekt het op een Bayesiaanse ma-
nier schatten van parameters bij auditsteekproeven, met de nadruk op het ge-
bruik van reeds bestaande informatie. Hoofdstuk 2 introduceert de basisideeën
achter Bayesiaanse parameterschatting en behandelt hoe informatie in de prior-
verdeling kan worden opgenomen. Het belangrijkste idee dat in dit hoofdstuk
wordt gëıntroduceerd is dat de prior-verdeling auditors in staat stelt om statis-
tisch voort te bouwen op reeds bestaande kennis over de fouten in de populatie in
hun steekproefprocedures. In dit hoofdstuk bespreek ik hoe het opnemen van reeds
bestaande informatie in de prior-verdeling een aantal praktische voordelen heeft
voor de auditor, waaronder de mogelijkheid tot een kleinere steekproefomvang en
meer transparantie. Daarnaast presenteert het hoofdstuk vijf methoden voor het
opstellen van een prior-verdeling in de context van auditsteekproeven. Deze prior-
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verdelingen worden gemaakt met behulp van bekende controleinformatie, waar-
door de auditor ze op een logische manier kan verantwoorden. Hoofdstuk 3 bouwt
voort op de fundamentele ideeën van Bayesiaanse parameterschatting uit Hoofd-
stuk 2 en bespreekt hoe aanvullende data kunnen worden opgenomen in het sta-
tistische model. Het belangrijkste idee dat in dit hoofdstuk wordt gëıntroduceerd
is dat het statistische model auditors in staat stelt hun steekproefprocedures sta-
tistisch te baseren op meerdere bronnen van data. In dit hoofdstuk ga ik in op hoe
dit twee voordelen heeft voor auditors: Ten eerste helpt het hen een genuanceerder
begrip van de populatie te ontwikkelen omdat ze de impact van de gëıntegreerde
data kunnen verklaren; en ten tweede wordt het voor hen gemakkelijkerer om
potentiële fouten in de populatie te identificeren omdat ze scherper onderscheid
kunnen maken tussen posten. Het hoofdstuk laat aan de hand van twee voorbeel-
den zien hoe een Bayesiaanse model-gebaseerde benadering de auditor kan helpen
een statistisch model te ontwikkelen dat is afgestemd op de situatie in de praktijk.

Het tweede deel van het proefschrift bespreekt het op een Bayesiaanse manier
toetsen van hypothesen, waarbij de nadruk ligt op de kwantificering van statistisch
controlebewijs. Hoofdstuk 4 bespreekt het concept van controlebewijs en intro-
duceert Bayesiaans hypothesetoetsen als een methode voor het kwantificeren van
dergelijk bewijs uit statistische steekproeven. Het kernidee dat in dit hoofdstuk
wordt gëıntroduceerd is dat statistisch controlebewijs kan worden gekwantificeerd
via de Bayes factor, een maatstaf voor de relatieve bewijskracht van twee ge-
toetste hypothesen. In het hoofdstuk wordt gedemonstreerd dat frequentistische
hypothesetoetsing een aantal praktische nadelen heeft die Bayesiaans hypothese-
toetsen met gebruikmaking van de Bayes factor kan verhelpen. Het gebruik van de
Bayes factor wordt vervolgens gëıllustreerd aan de hand van een aantal scenarios
uit een moderne audit context. Hoofdstuk 5 ontwikkelt een standaard Bayesiaanse
hypothesetoets voor steekproeven in een audit context. De Bayes factor is gevoe-
lig voor de specificatie van de prior-verdeling, maar de invloed van prior-verdeling
op de Bayes factor in de context van audit steekproeven is nog niet eerder on-
derzocht. Helaas kunnen prior-verdelingen die aantrekkelijk zijn om te gebruiken
in de context van een audit Bayes factoren opleveren die bewijs kwantificeren in
de tegenovergestelde richting van wat de data aangeven. Om dit probleem aan te
pakken, wordt in dit hoofdstuk een onpartijdige prior-verdeling voorgestelt. De
resulterende Bayes factor is consistent, dat wil zeggen, deze kwantificeert altijd be-
wijs in het voordeel van de hypothese die het best door de data wordt ondersteund.
Het belangrijkste idee in dit hoofdstuk is dat de onpartijdige Bayesiaanse hypo-
thesetoets geschikt is in een verscheidenheid van omstandigheden en bovendien
eenvoudig te gebruiken en te rechtvaardigen is.

Het derde deel van dit proefschrift bespreekt een software implementatie van
het Bayesiaanse statistische raamwerk dat in de eerdere hoofdstukken wordt be-
pleit. Het verbeteren van de toegankelijkheid van Bayesiaanse statistische technie-
ken voor auditors was één van de doelen van dit project. Daarom is JASP for Audit
ontwikkeld als een add-on module voor de bestaande software JASP, een open-
source statistisch programma met een grafische gebruikersinterface. Hoofdstuk 6
geeft een overzicht van JASP for Audit, dat zowel frequentistische als Bayesiaanse
statistische technieken biedt voor audit steekproeven met als doel de auditor te
helpen bij de statistische aspecten van een audit. Dit wordt bereikt door, naast
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andere analyses, een begeleidende workflow te bieden die de bekende vier stappen
uit het steekproefproces doorloopt, de noodzakelijke statistische berekeningen uit-
voert, en automatisch een controlerapport produceert met de statistische resulta-
ten en de interpretatie van deze resultaten. Dit hoofdstuk bespreekt de voordelen
van JASP for Audit voor de audit praktijk en biedt een grondige walkthrough van
drie voorbeelden. Verder geeft het aanbevelingen voor het gebruik van JASP for
Audit in de praktijk.

Kortom, dit proefschrift beoogt een innovatieve benadering van statistische
auditsteekproeven te ontwikkelen. Door een volledig Bayesiaans raamwerk voor
parameterschatting en hypothesetoetsing te bieden en deze technieken vrij be-
schikbaar te stellen, zorgt dit proefschrift ervoor dat auditors te allen tijde de
vruchten kunnen plukken van Bayesiaanse statistiek.
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